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11.1 Introduction (What we’re gonna do here) 
Metal fatigue of mechanical parts and structural elements refers to mechanical failure by fracture 
due to the formation and growth of cracks that are formed under cyclic (dynamic) loads, see 
Figure 1. But you already knew that, did you? This should have been outlined already in multiple 
courses. Anyway, this chapter of the HSRW-SoM lecture notes goes through it all again. This time, 
with the objective of assembling all the previous topics into something understandable that can 
be applied to actually do mechanical design against fatigue. You have probably heard about the 
Schmidt-diagram, fracture toughness of materials and Charpy-V drop hammer testing, the 
German FKM-guideline and possibly even fracture mechanics. Your mechanics professor, 
however, isn’t particular good at any of these items, and is happy that they all are considered 
elsewhere. So this chapter is written in order to avoid the above-mentioned topics and outline a 
design approach after briefly showing how to obtain reference stress measures and how to get 
principal stresses using eigenvalue-problems (because these are everywhere).  
The crucial aspect in the current approach is to account for notch stresses and the effect of a non-
zero mean stress component in our designs. This implies that we when we’re done, we’ll know 
how to handle a load which is not fully reversed along with stress concentrations caused by 
sudden changes in geometry. The effect of a non-zero mean stress is visualized in Figure 2 
considering the number of load cycles applied until failure occurs in a test specimen. Compressive 
mean stresses can be observed to be less critical than tensile mean stresses. This also makes sense 
qualitatively speaking, since compressive stresses will tend to close surface cracks, while tensile 
stresses will open them and lead to progressive formation of cracks. This is why crack formation, 
from a manufacturing perspective, can be prevented by hammering, shot peening, etc., since these 
processes introduce residual compressive stresses in the treated surface.1 

 
 

Figure 1 Fatigue failure in the tooth of a 
helical gear, Photo from Wikimedia  

Figure 2 Number of load cycle until failure for various 
cyclic stresses with varying mean stress  

Fatigue failure is admittedly among the trickiest aspects of mechanical design and often the one 
that is most confusing in the intro engineering classes. This is actually not particular surprising, if 
one thinks about the complexity of the considered phenomena. When considering crack growth, 
one approach is to analyze the stress states around cracks formed by various fracture mechanisms 

                                                             
1 An example of how these processes effect the lifetime of welded parts is available here  

 

https://commons.wikimedia.org/w/index.php?title=Special:Search&limit=100&offset=0&ns0=1&ns6=1&ns12=1&ns14=1&ns100=1&ns106=1&search=Fatigue+data&advancedSearch-current=%7b%7d#/media/File:GEAR_TOOTH_FATIGUE_PIT_AND_BREAK_-_NARA_-_17469200.jpg
https://vbn.aau.dk/ws/portalfiles/portal/19940194/XIII-2272-90r2.pdf
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using differential equations in order to obtain mathematical models, see Figure 3. This has led to 
the discipline called fracture mechanics and produces beautiful and complex mathematical 
models of fatigue as failure mechanism. Another approach to the study of crack growth is based 
on not thinking too much about fracture mechanisms and differential equations and conduct a 
high (like very high) number of experiments by which the number of load cycles until failure 
occurs simply is counted for various cyclic loads, see Figure 4. While the first approach is in the 
regime of theoretical applied mechanics, the second approach is followed by material scientists 
doing experimental research; and neither are particularly practical to apply when designing stuff. 
So it’s kind of up to us to come with something practical here. Luckily, there are a high number of 
textbooks on the topic, for example [1]-[3]. 

 

 
 
 

 

Figure 3 Crack mode commonly studied in fracture 
mechanics, Photo from Wikimedia  

Figure 4 Experimental results for the life time of 
fatigue test samples (S-N curve), Photo from 
Wikimedia 

Uncertainty in loads, which a mechanical part or element will experience – in particular when 
considering natural loads like wind, waves, current etc., is a particular challenge, which will not 
be considered in this chapter (there’ll hopefully be a chapter about this at some point in the 
future). Furthermore, we’re going to assume that the fatigue lifetime of a mechanical part or 
structural element is independent of the strain velocity (how fast loads are applied), the actual 
fracture mechanism (crack mode) and in which sequence varying loads are applied. Obviously, all 
three of the statements are lies. As a consequence, it is amazing how well the strategies outlined 
in the following actually work when applied to actual real life designs. The current scope is limited 
to linear elastic stress ranges in metallic materials. Or else, we’d never make our way through this 
topic.  

11.2 Principal- and reference stress  
11.2.1 Reference stress  

The first thing we’ll briefly recap is the basic question of when a material subjected to both normal 
and shear stress will fail. This question has turned out to not really have a simple answer, and as 
a consequence, a high number of failure criteria have been developed for specific types of 
materials2. However, the most widely applied failure criteria for ductile metallic materials is 
probably von Mises reference stress, which for a 3D state of mixed stresses is given by 

                                                             
2 Though it still academically speaking is considered bad style to cite Wikipedia, the material failure article 
actually provides a rather good list of failure criteria for various materials – that sort of should give an idea 
of how complex the matter is, and the formulation of those have indeed led to arguments in the past in the 
academic communities having almost the nature of ideological or religious wars. So caution is advised in 
discussions about failure criteria.   

https://upload.wikimedia.org/wikipedia/commons/e/e7/Fracture_modes_v2.svg
https://en.wikipedia.org/wiki/August_W%C3%B6hler#/media/File:BrittleAluminium320MPA_S-N_Curve.jpg
https://en.wikipedia.org/wiki/Material_failure_theory
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𝜎𝑣 = √(𝜎𝑥−𝜎𝑦)
2

+(𝜎𝑦−𝜎𝑧)
2

+(𝜎𝑧−𝜎𝑥)2+6(𝜏𝑥𝑦
2+𝜏𝑦𝑧

2+𝜏𝑧𝑥
2)

2
  

= √
(𝜎1−𝜎2)2+(𝜎2−𝜎3)2+(𝜎3−𝜎1)2

2
  

  
1. 

in which the second line is rewritten into principal stresses. We recall, that these occur when the 
stress state is described using a coordinate system chosen in such a way that the shear stresses 
vanish leaving us only with the numerically largest possible normal stresses. Following this 
approach, a single stress value 𝜎𝑣 can be defined and compared to an allowable stress – often 
related to the yield limit determined by a tensile test.  

11.2.2 Principal stress  

A feature, which we haven’t really considered yet, is the calculation of principal stresses on the 
basis of proper maths. This far, we have solely considered this problem using the stress 
transformation equations, often visualized by Mohr’s circle [7]. Basically, we may rotate any stress 
state by application of transformation matrices 

[𝜎]𝑟𝑜𝑡=[𝑇][𝜎][𝑇]′ 2. 
in which the transformation matrix and the  stress tensor is given by 

[𝑇] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
]     [𝜎] = [

𝜎𝑥 𝜏𝑥𝑦

𝜏𝑥𝑦 𝜎𝑦
] 3. 

Our objective is to determine the rotation that causes the non-diagonal shear entries of the stress 
tensor to vanish. It can be shown mathematically, that this corresponds to calculating the 
eigenvalues of the stress tensor arising from the characteristic polynomial in the form 

|[𝜎] − 𝜆[𝐼]| = 0 4. 
The principal directions can, in an equivalent way, be determined as the eigenvectors.  This 
method for calculation of principal stresses is often quite practical and fairly easy to implement, 
also for 3D stress states, in software for scientific programming.  
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11.2.3 Calculated example 11A  

A 2D stress state with 𝜎𝑥 = 60 N/mm2, 𝜎𝑦 = 40 N/mm2 and 𝜏𝑥𝑦 = 30 N/mm2 will be considered, see 

Figure 5. Our objective is to determine the principal stresses and directions using a) Mohr’s circle and b) 
the eigenvalues of the stress tensor, see equation 4. Furthermore, we’ll calculate the von Mises reference 
stress.  

  
Figure 5 The considered state of plane stress Figure 6 Mohr’s circle 

a) The average normal stress and the radius of Mohr’s circle is given by  

𝜎𝑎𝑣 =
𝜎𝑥+𝜎𝑦

2
=

60+40

2

𝑁

𝑚𝑚2 = 50 N/mm2         𝑅 = √ (
𝜎𝑥−𝜎𝑦

2
)

2

+ (𝜏𝑥𝑦)
2
=√ (

60−40

2
)

2

+ (30)2 𝑁

𝑚𝑚2 = 32 N/mm2    

The principal stresses can now be calculated   
𝜎1 = 𝜎𝑎𝑣 + 𝑅 = 82 N/mm2                 𝜎2 = 𝜎𝑎𝑣 − 𝑅 = 18 N/mm2   
Reviewing Mohr’s circle, see Figure 6, the required counter clockwise angle of rotation to obtain the 
principal direction   

tan(2𝜃) =
2𝜏𝑥𝑦

𝜎𝑥−𝜎𝑦
=

2∙30

60−40
→ 𝜃 = 36 deg  

In which we recall that a physical rotation of 𝜃, corresponds to a rotation of 2𝜃 in Mohr’s circle.  
If we want to figure out if this small piece of metal fails, we may calculate the von Mises reference stress. If 
we base this on the original stress state before rotation in 2D, we have 

𝜎𝑣 = √𝜎𝑥
2 + 𝜎𝑦

2 − 𝜎𝑥𝜎𝑦 + 3𝜏𝑥𝑦
2 = √602 + 402 − 60 ∙ 40 + 3 ∙ 302 N

mm2 = 74.2
N

mm2  

We can, just to check the validity of the calculation, check this in principal coordinates 

𝜎𝑣 = √𝜎1
2 + 𝜎2

2 − 𝜎1𝜎2 = √822 + 182 − 82 ∙ 18
N

mm2 = 74.2
N

mm2  

So this fits beautifully. We have here obtained a single stress value we could compare with an allowable 
normal stress – in lack to something better we’d often use the yield stress, to calculate a safety factor.     
b) Having now solved this problem using the classical approach, let’s try to do this using the eigenvalues 

|[𝜎] − 𝜆[𝐼]| = 0 → |[
𝜎𝑥 𝜏𝑥𝑦

𝜏𝑥𝑦 𝜎𝑦
] − 𝜆 [

1 0
0 1

]| = 0 → |[
𝜎𝑥 − 𝜆 𝜏𝑥𝑦

𝜏𝑥𝑦 𝜎𝑦 − 𝜆
]| = 0 

→ (𝜎𝑥 − 𝜆)(𝜎𝑦 − 𝜆) − (𝜏𝑥𝑦)
2

= 𝜆2 − (𝜎𝑥 + 𝜎𝑦)𝜆 + 𝜎𝑥𝜎𝑦 − (𝜏𝑥𝑦)
2

= 0   

𝜎1,2 = 𝜆1,2 =
(𝜎𝑥+𝜎𝑦)±√(𝜎𝑥+𝜎𝑦)

2
−4(𝜎𝑥𝜎𝑦−(𝜏𝑥𝑦)

2
)

2
= {

82
18

𝑁

𝑚𝑚2  

We can now redo the entire problem using Matlab.  

 
sigmax=60; sigmay=40; tau=30;   %Input plane state of stress 

A=[sigmax,tau;tau,sigmay];    %Define stress tensor 

[D,lambda]=eigs(A);     %Calculate principal stresses 

sigma1=(lambda(1,1)) 

sigma2=(lambda(2,2)) 

v1=[D(1,1),D(2,1)];     %Calculate principal directions 

tht1=acosd(dot(-[1,0],v1)/norm(v1)) 

v2=[D(1,2),D(2,2)];  

tht2=acosd(dot(-[1,0],v2)/norm(v2)) 
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11.3 Metallic materials: High cycle fatigue life time of un-notched specimens  
 

 

August Wöhler (1819-1914):  
German railway engineer and a great guy, who originally got the idea 
of performing lots and lots of tests with specimens of standardized 
size subjected to cycle loads to measure when these fail due to fatigue. 
Afterwards the measured point cloud turned out to look less messy 
and scary if plotted in a double logarithmic coordinate system, which 
ever since has been a standard trick in engineering to make the 
scatter seem less overwhelming.  
S-N curves are often called Wöhler curve. 
(Photo from Wikimedia, public domain)   

11.3.1 The S-N curve for standard test specimens   

If standardized tensile test specimens are subjected to various fully reversed cyclic loads 
(meaning having zero mean) until failure, we can generate a point cloud showing where each 
sample failed. When plotted in a double logarithmic coordinate system, most steel types would 
produce results as shown in Figure 7. Aluminum exhibit a similar behavior, except that the 
flattening effect referred to as the knee is not present, but the so-called Basquin line just continues 
straight to hell. This type of curve is called a S-N or Wöhler curve and is the primary metric for 
material scientists to measure how many load cycles a certain material can sustain before failing 
from fatigue due to crack formation. For steel types, the so-called knee clearly reveals that a load 
level exists for which cracks will never grow and theoretically speaking the considered test 
specimen will have infinite fatigue lifetime. This particular stress level is called the unmodified 
endurance limit when measured for standardized test specimens and occurs when about 106 load 
cycles have been applied.  

 
Figure 7 Steel S-N curve based on measured fatigue failure of standardized specimens  

We distinguish between low cycle fatigue, when failure occurs before 103, and high cycle fatigue 
governed by the so-called Basquin line, for which failure occurs after 103 load cycles have been 

https://en.wikipedia.org/wiki/August_W%C3%B6hler#/media/File:August_Wohler_old_book.png
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applied. If cyclic loads causing a test specimen to fail within the first 1000 cycles of a test, a 
significant level of plasticity will occur in the test specimen. This isn’t particularly practical when 
designing on the basis of our current stress paradigm, since we are kind-of hung up on linear 
elastic stresses. Therefore, low-cycle fatigue analysis is usually performed based on strain 
calculations, in which the strain components are divided into an elastic and a plastic component. 
We’re not going to go there. We will limit ourselves to the high-cycle fatigue regime, since this 
eventually is what we mainly need for mechanical design.   
In the high-cycle fatigue region, the Basquin line is given by the equation 

log (𝜎) = log (𝑎) + 𝑏log(𝑁) 5. 
in which the constants a and b are determined based on tensile tests. This is an accurate and 
scientifically fulfilling, but also extremely time consuming process. Therefore, often for 
mechanical design, we would have to count on being able to get these values based on material 
specifications, since only very high-level engineering applications usually justifies the generation 
of specific S-N curves by experimental means for a given project. Luckily, there’s a commonly 
applied hack for steel specimens. Statistically speaking, the material strength shows a quite decent 
correlation with the ultimate (breaking) strength of the material  

S𝑚 = {
0.90𝑆𝑢𝑡               (𝑏𝑒𝑛𝑑𝑖𝑛𝑔)

0.75𝑆𝑢𝑡         (𝑎𝑥𝑖𝑎𝑙 𝑙𝑜𝑎𝑑𝑠)
 

6. 

The unmodified endurance limit exhibit a similar good correlation  

S𝑒′ = {
0.50𝑆𝑢𝑡               

700 𝑁/𝑚𝑚2      
 

𝑆𝑢𝑡 < 1400 𝑁/𝑚𝑚2 
𝑆𝑢𝑡 > 1400 𝑁/𝑚𝑚2 

7. 

The hacks applied in equation 6 and 7 do not provide a particularly high accuracy compared to 
actual measurements or data from material specifications, but are often very useful in design in 
lack of something better.  

11.3.2 The modified S-N curve  

We can now, by various means, obtain a S-N curve for high-cycle fatigue calculations of tensile test 
specimens. The next question to ask is whether this curve is generally valid for all mechanical 
elements and structural members made of the same material. It would have been really great if 
that was the case, but we are not that lucky. It turns out that a number of factors influence the 
endurance limit. We will therefore define the modified endurance limit as the parameter valid for 
a particular part by  

S𝑒 = 𝐶𝑙𝑜𝑎𝑑𝐶𝑠𝑖𝑧𝑒𝐶𝑠𝑢𝑟𝑓𝐶𝑡𝑒𝑚𝑝𝐶𝑟𝑒𝑙S𝑒′ 8. 

The five necessary factors required will be explained in the following.  

The load factor It turns out that various loading conditions affect the endurance limit differently. 
We have  

𝐶𝑙𝑜𝑎𝑑 = {

1
0.7

0.577
1

 

(bending) 9. 
(axial loads)*1 
(torsion)*2 
(combined loads – use von Mises)  

*1) Some sources actually are to set the load factor to 0.8 or even 0.85. 
*2) If von-Mises reference is applied for stress calculation in torsion, 𝐶𝑙𝑜𝑎𝑑 = 1 can be applied.  

The size factor (by far the trickiest one) accounting for the fact that mechanical and structural 
elements may be significantly larger than the 8 mm standardized test samples usually applied for 
cyclic tensile and rotatory bending fatigue tests. I.e. the probability of material faults increases 
with the size of the considered part, and this reduces the fatigue endurance strength. 
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Furthermore, in a small specimen in bending, the stress will decay faster when moving from the 
outer surface into the material than for a larger specimen.  

For rotary bending tests of solid and hollow cylindrical steel parts, it has turned out that the size 
factor can be calculated by the simple rule obtained by fitting measurements 

𝐶𝑠𝑖𝑧𝑒 = {
1

1.189 ∙ 𝑑−0.097

0.6
 

𝑑 ≤ 8𝑚𝑚 – or part in tension  
10. 8𝑚𝑚 < 𝑑 ≤ 250𝑚𝑚 

𝑑 > 250𝑚𝑚 
That wasn’t too hard. Anyway, this only goes for steel cylinders in rotary bending, though these 
factors are also commonly used in torsion. Anyway, for axial loads, we may use 𝐶𝑠𝑖𝑧𝑒 = 1 (pure 
tension). But the question of how to handle non-rotary bending still remains open. Here comes a 
really wicked idea (originally proposed by a guy called Kuguel – I admit I’ve never read his paper). 
Fatigue crack growth is governed by the cross-sectional regions containing the largest stresses. 
Let’s equate the area of a cylindrical part and the area of any other part considered over which 
stress levels equal 95% or more of the max. stress level occurs, and use that area as the basis for 
a reference diameter, we’ll simply toss it directly into equation 10. This particular reference area 
is given by  

𝐴0.95 =
𝜋

4
(𝑑2 − (0.95𝑑)2) = 0.0766𝑑2  11. 

We can now calculate an equivalent diameter to apply in equation 10 

𝑑𝑒𝑞𝑢𝑖𝑣 = √
𝐴0.95

0.0766
  

(rotating round) 12. 

Using this particular (and quite wicked) way of thinking, we obtain the following equivalent 
diameters for the most common cross sections 

                                                             𝑑𝑒𝑞𝑢𝑖𝑣 = 0.37𝑑 (non-rotating round) 13. 

𝑑𝑒𝑞𝑢𝑖𝑣 = 0.808√𝑏ℎ (non-rotating rectangular) 14. 

                                                                     𝑑𝑒𝑞𝑢𝑖𝑣 = 0.10𝑏𝑡𝑓 (non-rotating I-beam) 15. 

The surface factor is added to account for the fact that surfaces with a rough finish perform 
worse in fatigue than surfaces with a fine finish – and how coarse or fine a surface is depends on 
the process used to manufacture it. We finally have found something here that’s easy to grasp. A 
statistical fit provides the expression 

C𝑠𝑢𝑟𝑓 = 𝑎(𝑆𝑢𝑡)𝑏 16. 

In which a and b are process dependent constants that can be found in      Table 1. 

 
Surface finish a B 
Ground 1.58 -0.085 
Machined or cold-drawn 4.51 -0.265 
Hot-rolled 57.7 -0.718 
As-forged 272 -0.995 

     Table 1 
 

Reliability (%) 𝐶𝑟𝑒𝑙 
50 1.000 
90 0.897 
99 0.814 
99.9 0.753 
99.99 0.702 
99.999 0.659 

Table 2 
 

The temperature factor accounts for the fact that high temperatures may reduce the endurance 
limit. In the current context, we’ll simply notice that we may set 𝐶𝑡𝑒𝑚𝑝 = 1 for temperatures 𝑇 <

450°𝐶  

The reliability factor may be added to account for the fact that the fatigue material parameters 
are obtained with standard statistical means, meaning that there’s a 50% possibility that the 
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actual parameters for a given test sample are worse. If a high reliability is required, this factor can 
be added.  Commonly used values reproduced from [3] are given in Table 2. 
Environmental effects, like reduction of endurance limits due to presence of chloride or acid, is 
a bit trickier to account for. In some sources, this is done by adding an additional factor 𝐶𝑒𝑛𝑣𝑖  to 
equation 8. However, this is indeed a very inaccurate way to account for these effects and in 
general, it is recommended to obtain and apply specific parameters obtained by testing. 

11.4 Fatigue life time of notched mechanical parts with non-zero mean 
stress 

All the hard work we just went through in the previous section was all about figuring out what the 
material strength and the endurance limit of some metallic material is. We haven’t even started 
considering how to calculate the actual stresses in a given mechanical part or structural member. 
The main thing we’ll have to work out here is how to handle the effect of rapid changes in 
geometry, which we call notches, see Figure 8 and Figure 9. For static loads we already know, that 
there’s a thing called the stress concentration (or amplification) factor, which we multiply with to 
get the stress induced by the notch.  However, for cyclic loading of ductile materials, notches turn 
out to be a bit less harmful than for static loads. 

11.4.1 Recap: the static stress concentration factor for notched specimens  
We know from the basic class on strength of materials, that the stress concentration factor 𝐾𝑡 for 
static loading conditions is dependent only on geometric parameters. Having derived this, or 
looked it up in tables, usually [8] – see Appendix A for a few basic examples. The notch stress is 
then given by   

𝜎𝑛𝑜𝑡𝑐ℎ = 𝐾𝑡𝜎𝑛𝑜𝑚 17. 

The nominal stress is calculated as usual based on the internal forces.  

  
Figure 8 Load lines generating notch stress 
around hole in plate, from Wikimedia, CC-licensed 

Figure 9 Notch stress due to abrupt change in 
diameter 

  

11.4.2 The fatigue stress concentration factor  
It turns out that ductile materials under cyclic loads are slightly more forgiving than when 
subjected to static loads. As a consequence, we may reduce the stress concentration factor leading 
to a second definition of the term known as the fatigue stress concentration factor 𝐾𝑓 

𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1) 18. 

in which q denotes the notch sensitivity – a material constant dependent on the ductility of the 
material. The notch sensitivity can be obtained using the following expression suggested by a guy 
called Peterson 

𝑞 =
1

1 +
𝑎
𝑟

 
19. 

https://commons.wikimedia.org/w/index.php?title=Special:Search&limit=100&offset=0&profile=default&search=stress+concentration&advancedSearch-current=%7b%7d&ns0=1&ns6=1&ns12=1&ns14=1&ns100=1&ns106=1#/media/File:HoleForceLines.svg
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In which 𝑎 is the characteristic length of a given material. For steel, this can be correlated (again!) 
with the ultimate strength using the following expression 

𝑎 = 0.0254 (
2070

𝑆𝑢𝑡
)

1.8

 
20. 

with 𝑆𝑢𝑡 in MPa and 𝑎 in mm. For aluminum alloys, 𝑎 is often estimated to be 0.635 mm [2]. It is 
noted that these relations are purely empirical and based on fully reversed loading.  

11.4.3 Effect of non-zero mean stress: the Haigh diagram 

 

 
Bernard Haigh (1884-1941) 
A Scottish professor at the British Naval college, who did a fantastic 
job not only describing the effects of non-zero mean stress of cyclic 
loads on the endurance limit … but also contrary to many other people 
communicated this in a way understandable to the common engineer 
– see the Haigh diagram below.  
 
 
 
(Photo from Wikimedia, GFDL)   

 

There’s a problem we haven’t considered yet, namely that mean stress is not necessarily zero. A 
tensile mean stress will reduce the endurance limit (since it causes surface cracks to open) while 
it’s safe to assume that a compressive mean stress will leave the endurance limit unchanged. In 
the classes on mechanical design, most students have learned to account for this effect using the 
so-called Schmidt diagram. However, the information contained in this particular visualization 
can be presented in a different way: the Haigh diagram, see Figure 10. In this type of visualization, 
the mean stress is being plotted against the amplitude stress. 
 

 
Figure 10 Haigh diagram  

 
Now, we just have to work out how to define the line limiting a safe design in the tensile region, 
meaning the limit for which a mechanical part will have infinite lifetime. This is essentially about 

https://en.wikipedia.org/wiki/Bernard_Haigh
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connecting the modified endurance limit for zero mean stress with an appropriate value on the 
horizontal axis (and was for many years the easiest way to immortalize your name in mechanical 
engineering – just draw another line in the tension region) 

Goodman line:  𝜎𝑎 = 𝑆𝑒 (1 −
𝜎𝑚

𝑆𝑢𝑡
)  21. 

The most conservative estimate is based on the yield stress and is given by 

       Soderberg line: 𝜎𝑎 = 𝑆𝑒 (1 −
𝜎𝑚

𝑆𝑦
)  22. 

Finally, a parabolic fit actually is what fits the test data best, though constituting the least 
conservative option 

Gerber parabola: 𝜎𝑎 = 𝑆𝑒 (1 −
𝜎𝑚

2

𝑆𝑢𝑡
2 )  23. 
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11.4.4 Calculated example 11B 

 

 
 
 

A compound cylinder has diameters 𝑑𝐴𝐵 =
120 𝑚𝑚 and 𝑑𝐵𝐷 = 80 𝑚𝑚 with a transition 
between the small and large diameter having a 
fillet with radius 𝑟 = 4 𝑚𝑚. The cylinder is made 
of machined steel with yield strength 𝑆𝑦 =

355 𝑁/𝑚𝑚2 and ultimate tensile strength 𝑆𝑢𝑡 =
600 𝑁/𝑚𝑚2.  
If a fully reversed cyclic axial load 𝐹𝐷 = 350 𝑘𝑁 is 
applied, determine: 

a) The safety factor against static yielding  
b) The safety factor against fatigue failure 

(assuming infinite lifetime is required)  

If a constant static load 𝐹𝐷
(𝑚)

= 300 𝑘𝑁 is applied 

in addition to the cyclic load mentioned above, 
determine: 

c) The safety factor against fatigue failure 
(assuming infinite lifetime is required)  Figure 11 

a) It is noted, that the internal force is constant, i.e. 𝐹𝐴𝐵 = 𝐹𝐵𝐷 = 𝐹𝐷. The nominal amplitude 
stresses are given by  

𝜎𝐴𝐵
(𝑎)

=
𝐹𝐴𝐵

𝜋

4
𝑑𝐴𝐵

2 =
350∙103 N

𝜋

4
(120 mm)2

= 30.9
N

mm2   𝜎𝐵𝐷
(𝑎)

=
𝐹𝐵𝐷

𝜋

4
𝑑𝐴𝐵

2 =
350∙103 N

𝜋

4
(80 mm)2

= 69.6
N

mm2  

The highest stress in the mechanical part will occur in the notch due to the transition between the 
small and the large diameter segment. The static stress concentration factor can be determined 
on the basis of the diagrams in Appendix A (Case 1).  

𝐷

𝑑
=

𝑑𝐴𝐵

𝑑𝐵𝐷
=

120

80
= 1.5

𝑟

𝑑
=

𝑟

𝑑𝐵𝐷
=

4

80
= 0.05

} → 𝐾𝑡 ≈ 2.25  

The notch stress and corresponding safety factor against failure by yielding can now be calculated  

𝜎𝐵,𝑠𝑡𝑎𝑡𝑖𝑐
(𝑛𝑜𝑡𝑐ℎ)

= 𝐾𝑡𝜎𝐵𝐷
(𝑎)

= 2.25 ∙ 69.6
N

mm2 = 156.7
N

mm2 → 𝑆𝐹𝑦𝑖𝑒𝑙𝑑 =
𝑆𝑦

𝜎𝐵
(𝑛𝑜𝑡𝑐ℎ) =

355

156.7
= 2.27  

b)  
Endurance strength: Having no specified information about the S-N curve of the material, the 
unmodified endurance strength is approximated quite accurately by equation 7 (for 𝑆𝑢𝑡 <
1400 N/mm2): 

𝑆𝑒′ = 0.50𝑆𝑢𝑡 = 0.5 ∙ 600
N

mm2 = 300
N

mm2  

That would constitute the endurance strength of a tensile test sample. In order to modify this value 
to be representative for the actual mechanical part, we calculate the required factors: 
𝐶𝑙𝑜𝑎𝑑 = 0.7 and 𝐶𝑠𝑖𝑧𝑒 = 1.0 for axial loads. 
For machined steel, we find 𝑎 = 4.51 and 𝑏 = −0.265 in     Table 1, and obtain the surface factor 
using equation 16 to 
C𝑠𝑢𝑟𝑓 = 𝑎(𝑆𝑢𝑡)𝑏 = 4.51(600 N/mm2)−0.265 = 0.83. 

For service at ambient temperature and normal reliability, 𝐶𝑡𝑒𝑚𝑝 = 𝐶𝑟𝑒𝑙 = 1. The modified 

endurance strength can now be calculated applying equation 8: 

S𝑒 = 𝐶𝑙𝑜𝑎𝑑𝐶𝑠𝑖𝑧𝑒𝐶𝑠𝑢𝑟𝑓𝐶𝑡𝑒𝑚𝑝𝐶𝑟𝑒𝑙S𝑒′ = 0.7 ∙ 1.0 ∙ 0.83 ∙ 1 ∙ 1 ∙ 300
N

mm2 = 174
N

mm2  
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Fatigue notch stress:  We observed in section 11.4.2, that when it comes to notch stresses, 
materials might be more forgiving when subjected to cyclic loads than when loaded statically. This 
is however dependent on how ductile, or brittle a material is. For steel, the notch length will be 
determined using equation 20 enabling us to calculate the notch sensitivity factor with equation 
19: 

𝑎 = 0.0254 (
2070

𝑆𝑢
)

1.8
= 0.0254 (

2070

600
)

1.8
= 0.24 mm           𝑞 =

1

1+
𝑎

𝑟

=
1

1+
0.24

5

= 0.94  

The fatigue stress concentration factor is now given by  
𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1) = 1 + 0.94(2.25 − 1) = 2.18 

The fatigue notch stress amplitude is 

𝜎𝐵
(𝑎)

= 𝐾𝑓𝜎𝐵𝐷
(𝑎)

= 2.18 ∙ 69.6
N

mm2 = 151.8
N

mm2  

The mean stress 𝜎𝐵
(𝑚)

= 0, so the safety against fatigue failure can be calculated directly as 

𝑆𝐹𝑓𝑎𝑡𝑖𝑔𝑢𝑒,𝑓𝑢𝑙𝑙𝑦 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑 =
𝑆𝑒

𝜎𝐵
(𝑎)

=
174

151.8
= 1.15 

Strictly speaking, this safety is sufficient, but not particularly impressive. Most guidelines for steel 
design would require a higher safety factor.  
c) Adding a constant stress component does not alter the amplitude stress (or cyclic component). 

It is still 𝜎𝐵
(𝑎)

= 151.8 N/mm2. However, we now have a non-zero mean stress. This may be 

calculated along with the corresponding notch stress  

𝜎𝐵𝐷
(𝑚)

=
𝐹𝐵𝐷

(𝑚)

𝜋

4
𝑑𝐴𝐵

2 =
300∙103 N

𝜋

4
(80 mm)2

= 59.7
N

mm2       𝜎𝐵
(𝑚)

= 𝐾𝑓𝜎𝐵𝐷
(𝑚)

= 2.18 ∙ 59.7
N

mm2 = 130.1
N

mm2  

The deal is that we will use the lines in the Haigh diagram to actually figure out if the design is 
safe. We’ll start out using the Goodman-line, since this is the most commonly applied criteria. 
Applying equation 21 directly, on the basis of the calculated mean stress, we may determine the 
allowable stress amplitude 

𝜎𝑎𝑙𝑙𝑜𝑤
(𝑎)

= 𝑆𝑒 (1 −
𝜎𝑚

𝑆𝑢𝑡
) = 174

N

mm2 (1 −
130.1

600
) = 136.1

N

mm2  

The safety factor is now given by  

𝑆𝐹𝑓𝑎𝑡𝑖𝑔𝑢𝑒,𝐺𝑜𝑜𝑑𝑚𝑎𝑛 =
𝜎𝑎𝑙𝑙𝑜𝑤

(𝑎)

𝜎𝐵
(𝑎) =

136.1

151.8
= 0.90  

With a safety below 1.0, the design is not safe meaning that the part will not have infinite lifetime.  
Now, let’s presume that this part isn’t critical from a safety perspective (in the sense that failure 
poses no potential for anyone getting hurt) and that the cost and consequence of failure is limited. 
We may try to calculate the safety factor applying the Gerber parabola in equation 23, which, 
after all, is the best fit to measured data: 

𝜎𝑎𝑙𝑙𝑜𝑤
(𝑎)

= 𝑆𝑒 (1 −
𝜎𝑚

2

𝑆𝑢𝑡
2 ) = 174

N

mm2 (1 −
130.12

6002 ) = 165.7
N

mm2  

This gives us a safety factor of  

𝑆𝐹𝑓𝑎𝑡𝑖𝑔𝑢𝑒,𝐺𝑒𝑟𝑏𝑒𝑟 =
𝜎𝑎𝑙𝑙𝑜𝑤

(𝑎)

𝜎𝐵
(𝑎) =

165.7

151.8
= 1.09  

So this might work, but the design is on the limit and recalling, that we have not decreased the 
reliability factor, the mechanical part should be resized to ensure that it can carry the prescribed 
loads.  
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11.5  Cycle counting and load spectra  
[To be updated] … This is going to be about Rainflow counting and Palmgren-Miner’s rule for 

linearly accumulated damage. That’ll be next time.    

11.6  Introduction to plasticity  
[To be updated] … This will be about perfectly elastic-plastic material models and Ramberg-
Osgood’s equation for hysteresis and modeling of strain-hardening. That’ll be next year.   
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Problems 

 

Problem 1 
A small segment of material is subjected to plane stresses 

𝜎𝑥 = 40, 𝜎𝑦 = −20 and 𝜏 = 30 N/mm2 

Determine the principal stresses and required angle of 
rotation to obtain the principal direction by applying 

a) Mohr’s circle  
b) The eigenvalues of the stress tensor (first 

analytically, then with Matlab) 
c) The von Mises reference stress for the original 

stress state 
Ans: 𝜎1 = 52, 𝜎2 = −32 N/mm2, 𝜃 = 22.5 deg 
          𝜎𝑟𝑒𝑓 = 74.2 N/mm2 

 

Problem 2 
A small segment of material is subjected to plane stresses  

𝜎𝑥 = 40, 𝜎𝑦 = 20 N/mm2 

Determine the stress state occurring by a 30 deg clockwise 
rotation of the segment using  

a) Mohr’s circle  
b) Transformation of the stress tensor  

Ans: 𝜎𝑥′ = 35, 𝜎𝑦′ = 25, 𝜏𝑥𝑦′ = −8.7 N/mm2 

 

Problem 4 
Consider the expression for the 3D von Mises reference stress in equation 1 and derive the 
corresponding expression for  

a) A 2D state of stress     Ans: 𝜎𝑟𝑒𝑓 = √𝜎𝑥
2 + 𝜎𝑦

2 − 𝜎𝑥𝜎𝑦 + 3𝜏    

b) A 1D state of stress     Ans: 𝜎𝑟𝑒𝑓 = √𝜎𝑥
2 + 3𝜏  

 

 
Ans: 

a) 4.2, 
b)  1.76,  
c) Goodman: 1.35 

Gerber: 1.66  

Problem 4 
A compound cylinder has diameters 𝑑𝐴𝐵 = 120 mm and 
𝑑𝐵𝐷 = 60 mm with a transition between the small and 
large diameter having a fillet with radius 𝑟 = 6 mm. The 
cylinder is made of machined steel with yield strength 
𝑆𝑦 = 355 N/mm2 and ultimate tensile strength 𝑆𝑢𝑡 =

600 N/mm2.  
If a fully reversed cyclic torque 𝑇𝐷 = 1.5 kNm is applied, 
determine: 

a) The safety factor against static yielding  
b) The safety factor against fatigue failure  

Assuming infinite lifetime and a reliability of 
99.9% corresponding to 𝐶𝑟𝑒𝑙 = 0.753 is 
required by service at ambient temperature 
Hint: use von Mises reference stress  

If a constant static torque 𝑇𝐷
(𝑚)

= 2.5 kNm is applied in 
addition to the cyclic load mentioned above, determine: 

c) The safety factor against fatigue failure 
(assuming infinite lifetime is required) 
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Ans: 

a) 1.35, 
b)  Goodman; 1.57,  
c) a. 1.35, b. 1.14 

Problem 5 
A compound cylinder has diameters 𝑑𝐴𝐵 = 120 mm and 
𝑑𝐵𝐷 = 60 mm with a transition between the small and 
large diameter having a fillet with radius 𝑟 = 3 mm. The 
lengths of the segments are given by 𝐿𝐴𝐵 = 𝐿𝐵𝐷 =
800 mm The cylinder is made of hot-rolled steel with 
yield strength 𝑆𝑦 = 235 N/mm2 and ultimate tensile 

strength 𝑆𝑢𝑡 = 550 N/mm2. Normal reliability at 
ambient temperature is required. 
 
If a cyclic and a static end load 𝐹𝐷

𝑎 = 𝐹𝐷
𝑚 = 1 kN is 

applied, determine: 
a) The safety factor against static yielding  
b) The safety factor against fatigue failure 

(assuming infinite lifetime is required) 
c) Solve the problem if the loads are redistributed 

so 𝐹𝐷
𝑎 = 1.5 and 𝐹𝐷

𝑚 = 0.5 kN 

 
Problem 6 
Reviewing equation 5, derive the equation for the Basquin line (the constants a and b) for 

a) The axial load calculated example in the lecture notes  
b) Problem 5 

Ans:      a) 𝑆𝑒 = 174, 𝑆𝑚 = 450
N

mm2 → 𝑎 = 1.164 ∙ 103, 𝑏 = −0.1376
N

mm2 

               b) 𝑆𝑒 = 153, 𝑆𝑚 = 495
N

mm2 → 𝑎 = 1.602 ∙ 103, 𝑏 = −0.1700
N

mm2 
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Appendix A: static stress concentration factors  
Axial loads  

 

https://commons.wikimedia.org/w/index.php?title=Special:Search&limit=100&offset=0&profile=default&search=stress+concentration&advancedSearch-current=%7b%7d&ns0=1&ns6=1&ns12=1&ns14=1&ns100=1&ns106=1#/media/File:Kt_arbre_epaule_traction.svg
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Bending 

 

https://commons.wikimedia.org/w/index.php?title=Special:Search&limit=100&offset=0&profile=default&search=stress+concentration&advancedSearch-current=%7b%7d&ns0=1&ns6=1&ns12=1&ns14=1&ns100=1&ns106=1#/media/File:Kt_arbre_epaule_flexion.svg
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Torsion  

 

https://commons.wikimedia.org/w/index.php?title=Special:Search&limit=100&offset=0&profile=default&search=stress+concentration&advancedSearch-current=%7b%7d&ns0=1&ns6=1&ns12=1&ns14=1&ns100=1&ns106=1#/media/File:Kt_arbre_epaule_torsion.svg

