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Problems based introduction to machine dynamics  

1. Introduction (what we’re gonna do here)  
This set of lecture notes contain the main contents, which will be covered in the HSRW 
mechanical engineering elective on Machine Dynamics. It has, in order to try something new for 
once, been attempted not to include long a tedious derivations of the underlying theory, since 
most of this should be available already or can be found elsewhere. Instead, the current set of 
lecture notes are focused on problem solving, which in a machine dynamics framework 
mathematically speaking gets more than tedious enough.  
The course is initiated with a recap of plane kinematics of rigid bodies based on the classical 
formulation of the principle of relative motion (see for example [1]) along with the equivalent 
formulation commonly applied in MBD based on transformation between a fixed global– and a 
moving body mounted frame, see [2] and [3]. Secondly, it will be recapped how equations of 
motions are derived using the Newton-Euler equations, Lagrange’s principle and the 
conventional MBD approach to forward dynamics (usually applied for numerical analysis). 
Finally, before taking a brief detour into equations of motion and eigenfrequencies for multi-DOF 
particle vibrations, a crash course in old school rotor dynamics will be given with particular 
focus on whirling- and fault frequencies and their importance in machine dynamics and 
diagnostics and condition monitoring of rotating equipment. It has turned out to be 
unexpectedly difficult to recommend a good text book on these topics (this fact may suggest that 
we should do our own book in the future). For now, the required theoretical background is 
contained in [4], but students are encouraged to have a bit of fun with the fundamentals of signal 
processing for noise and vibrations on their own [6]. 

1.1. The standard formalities  
If you are a lecturer …  
 

 

All sketches, equations and text in these notes are the creation of the author, 
and you are welcome to use, borrow, steal and modify the content with or 
without citation. Photos taken from Wikimedia (will be clearly marked) are an 
exception. These are licensed so reproduction is allowed, but it is left to the 
reader to look up the specific details regarding licensing, citation and 
modification.   

 
CarlaTheKraken is NOT a protected trademark or protected by copyright law. If you’re crazy 
enough to try to steal it, just go ahead.  
 
If you are a student, remember the first three rules required for learning mechanics:  

1. Come to the lectures, go to the exercises  
2. Come to the lectures, go to the exercises  
3. Mechanics is NOT hard, but if it does not hurt when you start learning something new, 

you are probably not doing it right  

 

Regards,  
 

 
Prof. Niels Højen Østergaard 
 
Engineering Mechanics  
Hochschule Rhein-Waal  
niels.ostergaard@hochschule-rhein-waal.de 
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2. Plane dynamics revisited with the sliding rod problem  
The first problem we will consider is the so-called sliding rod (sometimes referred to as the 
‘sliding ladder’) problem, see Figure 1. As the matter of fact, this problem will be applied to recap 
and explain almost all concepts from classical plane dynamics.   

2.1. Kinematics 

2.1.1. Calculated example: analytical kinematics analysis rod (classical approach)  
Firstly, the classical approach to rigid body kinematics based on the principle of relative motion 
will be recapped. 

Problem description: A slender rod of length L has in each end wheels attached as shown in 
Figure 1. The left wheel denoted A is fixed in a vertical trace while the right end denoted B is 
fixed in a horizontal trace. The right end of the rod is subjected to a constant velocity 𝑣𝐵  due to a 
… let’s say there’s an actuator acting on this end.   Determine the velocity and acceleration of 
wheel A along with the angular velocity and acceleration of the rod.  

 
Figure 1 Sliding rod problem  

Theory recap:  It is recalled from classical dynamics [1], that the principle of relative motion at 
position level can be formulated between two points A and B as 

𝒓𝐴 = 𝒓𝐵 + 𝒓𝐴/𝐵 1. 

In which 𝒓𝐴/𝐵  denotes the position of A relative to- or seen from B. Differentiation provides us 

with the following expressions: 
𝒗𝐴 = 𝒗𝐵 + 𝒗𝐴/𝐵 → 𝒂𝐴 = 𝒂𝐵 + 𝒂𝐴/𝐵 2. 

In which 𝒗𝐴/𝐵 = 𝝎 × 𝒓𝐴/𝐵. At acceleration level, the relative acceleration term 𝒂𝐴/𝐵 is commonly 

split in to a normal term (𝒂𝐴/𝐵)
𝑛

= 𝝎 × (𝝎 × 𝒓𝐴/𝐵) and a tangential term (𝒂𝐴/𝐵)
𝑡
= 𝜶 × 𝒓𝐴/𝐵 

𝒂𝐴 = 𝒂𝐵 + (𝒂𝐴/𝐵)
𝑛

+ (𝒂𝐴/𝐵)
𝑡
 3. 

It is noted that 𝒂𝐵  is related to a translating motion with no change of spatial orientation, while 
𝒂𝐴/𝐵 describes a rotating motion. The sum of the two yields a general motion.   
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Solution: in order to determine the unknown velocity terms, we apply the principle of relative 
motion at velocity level from equation 2. It is chosen to consider the velocity of A seen from B, 
but this could might as well have been done the other way around. Sketching directions and 
magnitudes and writing down the vector equation on component form, we obtain 

 

 (
0

−𝑣𝐴
) = (

𝑣𝐵

0
) + (

−𝜔𝐿𝑠𝑖𝑛𝜃
−𝜔𝐿𝑐𝑜𝑠𝜃

) 

              → {
𝜔 =

𝑣𝐵

𝐿𝑠𝑖𝑛𝜃

𝑣𝐴 = 𝜔𝐿𝑐𝑜𝑠𝜃 =
𝑣𝐵

𝑡𝑎𝑛𝜃

  

 
 

4. 

It is noted that 𝒗𝐴/𝐵 since it is defined as cross-product, is perpendicular to  𝒓𝐴/𝐵. Continuing in 

the same fashion, we apply the principle of relative motion at acceleration level from equation 3. 
Again, sketching directions and magnitudes, and writing down the vector equation on 
component form, we obtain 

 

 (
0

−𝑎𝐴
) = ( 𝜔2𝐿𝑐𝑜𝑠𝜃

−𝜔2𝐿𝑠𝑖𝑛𝜃
) + (

−𝛼𝐿𝑠𝑖𝑛𝜃
−𝛼𝐿𝑐𝑜𝑠𝜃

)     

→ {
𝛼 = 𝜔2 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
=

𝜔2

𝑡𝑎𝑛𝜃

𝑎𝐴 = 𝜔2𝐿𝑠𝑖𝑛𝜃 + 𝛼𝐿𝑐𝑜𝑠𝜃 = 𝜔2𝐿 (𝑠𝑖𝑛𝜃 +
𝑐𝑜𝑠𝜃

𝑡𝑎𝑛𝜃
)

  

 
 

5. 

In which 𝒂𝐵 = 0, since  𝒗𝐵 is constant. It is noted that the relative acceleration terms form the 

acceleration components of a point in circular motion, and that the normal term (𝒂𝐴/𝐵)
𝑛

 points 

from A to B along 𝒓𝐴/𝐵 and the tangential term (𝒂𝐴/𝐵)
𝑡
 is perpendicular to the normal direction 

and 𝒓𝐴/𝐵.   

2.1.2. Calculated example: vector kinematics analysis (MBD approach)  

Problem description: We will now solve the same problem as in the previous section (2.1.1) by 
using transformation matrices based on a mapping between a global fixed xy-based frame and a 
local 𝜉𝜂-based frame.  

 
Figure 2 Vectors and coordinate systems required  

Theory recap:  from the theory used for computational MBD described in [2] and [3], we recall 
that the global position vector of any point P in a rigid body (𝒓)𝑃 can be written as the sum of the 
position vector of the body C.o.G (𝒓) and the relative distance between the C.o.G and point P 
(𝒔)𝑥𝑦

𝑃 . The latter can be expressed in a global xy-based frames. It may however also be expressed 

in a local 𝜉𝜂-based frame. These can be related by the transformation matrix [𝑨], which is a 
function of the angle 𝜃 describing the spatial orientation of the body. We note, that this angle is 
always measured with respect to the global x-axis and is positive and in counter-
clockwise direction.  
(𝒓)𝑃 = (𝒓) + (𝒔)𝑥𝑦

𝑃 = (𝒓) + [𝑨](𝒔)𝜉𝜂
𝑃  6.  
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The velocity and acceleration terms can be obtained by time differentiation. Recalling that 

(𝒔)̇ 𝑥𝑦
𝑃 = (�̆�)𝑥𝑦

𝑃 �̇� (intuitively clear if you think about it and draw it), we obtain the velocities 

(𝒓)̇ 𝑃 = (𝒓)̇ + (�̆�)𝑥𝑦
𝑃 �̇�  with (�̆�)𝑥𝑦

𝑃 = (
−𝑠𝑦

𝑃

𝑠𝑥
𝑃

) 
7. 

Furthermore, the accelerations can be obtained as  

(𝒓)̈ 𝑃 = (𝒓)̈ + (�̆�)𝑥𝑦
𝑃 �̈� − (𝒔)𝑥𝑦

𝑃 �̇�2 8. 

Solution: It is noted, that the spatial orientation of the rod is negative when using the common 
convention for transformation matrices. Initially, the coordinates of the rod end-points in the 
local frame are obtained as  

(𝒔)𝜉𝜂
𝐴 = (

−
𝐿

2

0
)  (𝒔)𝜉𝜂

𝐵 = (
𝐿

2

0
)  

Transformation to global coordinates can be performed applying the second term  

(𝒔)𝑥𝑦
𝐴 = [𝑨](𝒔)𝜉𝜂

𝐴 = [
cos𝜃 −sin𝜃
sin𝜃 cos𝜃

] (
−

𝐿

2

0
) = (

−
𝐿

2
cos𝜃

−
𝐿

2
sin𝜃

)  (𝒔)𝑥𝑦
𝐵 = [𝑨](𝒔)𝜉𝜂

𝐵 = [
cos𝜃 −sin𝜃
sin𝜃 cos𝜃

] (
𝐿

2

0
) = (

𝐿

2
cos𝜃

𝐿

2
sin𝜃

)   

We may now apply equation 7 and calculate the end point velocities 

(�̇�)𝐴 = (�̇�) + (�̆�)𝑥𝑦
𝐴 �̇� → (

0
𝑣𝐴) = (

𝑣𝑥
𝐺

𝑣𝑦
𝐺) + (

𝐿

2
sin𝜃

−
𝐿

2
cos𝜃

) �̇�    (𝒓)̇ 𝐵 = (𝒓)̇ + (�̆�)𝑥𝑦
𝐵 �̇� → (𝑣

𝐵

0
) = (

𝑣𝑥
𝐺

𝑣𝑦
𝐺) + (

−
𝐿

2
sin𝜃

𝐿

2
cos𝜃

) �̇�  

These two equations contain the x and y velocity components of G and the angular velocity �̇� as 
unknowns. Isolating the velocity of G in both the left and the right equation, and setting these 
equal provides us with the following expression allowing for calculation of the angular velocity: 

(
0
𝑣𝐴) − (

𝐿

2
sin𝜃

−
𝐿

2
cos𝜃

) �̇�  = (𝑣
𝐵

0
) − (

−
𝐿

2
sin𝜃

𝐿

2
cos𝜃

) �̇�    

Considering the x-components, it follows that   

(𝐈) → −
𝐿

2
sin𝜃�̇� = 𝑣𝐵 +

𝐿

2
sin𝜃�̇� → �̇� = −

𝑣𝐵

𝐿sin𝜃
   

Since the orientation is negative, and sin(−𝜃) = −sin (𝜃), this is the same result as obtained in 
the previous example with conventional principles. The linear velocity can now be obtained 

(𝐈𝐈) → 𝑣𝐴 = −
𝐿

2
cos𝜃�̇� −

𝐿

2
cos𝜃�̇� = −𝐿cos𝜃�̇� = −𝐿cos𝜃 (−

𝑣𝐵

𝐿sin𝜃
) =

𝑣𝐵

𝑡𝑎𝑛𝜃
  

The acceleration can be considered in a similar fashion using equation 8. 

(𝒓)̈ 𝐴 = (𝒓)̈ + (�̆�)𝑥𝑦
𝐴 �̈� − (𝒔)𝑥𝑦

𝐴 �̇�2 → (
0
𝑎𝐴

) = (
𝑎𝑥

𝐺

𝑎𝑦
𝐺) + (

𝐿

2
sin𝜃

−
𝐿

2
cos𝜃

) �̈� − (
−

𝐿

2
cos𝜃

−
𝐿

2
sin𝜃

) �̇�2        

(𝒓)̈ 𝐵 = (𝒓)̈ + (�̆�)𝑥𝑦
𝐵 �̈� − (𝒔)𝑥𝑦

𝐵 �̇�2 → (
0
0
) = (

𝑎𝑥
𝐺

𝑎𝑦
𝐺) + (

−
𝐿

2
sin𝜃

𝐿

2
cos𝜃

) �̈� − (

𝐿

2
cos𝜃

𝐿

2
sin𝜃

) �̇�2         

(𝐈) → 𝑎𝑥
𝐺 +

𝐿

2
sin𝜃�̈� +

𝐿

2
cos𝜃�̇�2 = 𝑎𝑥

𝐺 −
𝐿

2
sin𝜃�̈� −

𝐿

2
cos𝜃�̇�2    

      → �̈� (
𝐿

2
sin𝜃 +

𝐿

2
sin𝜃) = −

𝐿

2
cos𝜃�̇�2 −

𝐿

2
cos𝜃�̇�2     

      → �̈� = −
𝐿cos𝜃

𝐿sin𝜃
�̇�2 = −

�̇�2

𝑡𝑎𝑛𝜃
     

Since the orientation is negative, and tan(−𝜃) = −tan(𝜃), this is again the same result as in the 
previous example. Finally, the unknown acceleration can be determined  

(𝐈𝐈) → −𝑎𝐴 + 𝑎𝑦
𝐺 −

𝐿

2
cos𝜃�̈� +

𝐿

2
sin𝜃�̇�2 = 𝑎𝑦

𝐺 +
𝐿

2
cos𝜃�̈� −

𝐿

2
sin𝜃�̇�2  

      → 𝑎𝐴 = −𝐿cos𝜃�̈� + 𝐿sin𝜃�̇�2  

                = −𝐿cos𝜃 (−
�̇�2

𝑡𝑎𝑛𝜃
) + 𝐿sin𝜃�̇�2  

                = �̇�2𝐿 (sin𝜃 +
cos𝜃

𝑡𝑎𝑛𝜃
)  

 
 
 



6 
 

This result also corresponds to what was obtained in the previous example.  
Clearly, the latter approach has not proven more efficient for analytical calculations. However, it 
turns out to be more convenient for implementation in numerical models than the classical 
approach, and is in additional quite practical when formulating kinematic constrains 
parametrically for general purpose codes, see [2] and [3]. 

2.2. Calculated example: forward dynamics  
A long and slender rod with geometry as in the previous examples is considered. However, the 
rod is now in the lower end B subjected to an end force P and as consequence, the motion of the 
rod can no longer be determined only based on kinematics, see Figure 3. I.e. we are going to 
need the Newton-Euler equations.  
In this section, a rod with length 𝐿 = 0.8 m, mass 𝑚 = 12 kg, initial angle 𝜃0 = 60 deg and 
external end load P=100 N.  

 
Figure 3 Sliding rod with end load 

2.2.1. Newton-Euler approach to solution for forces for initial conditions  

Problem description:  Initially, we will consider the rod as it is being released from rest, i.e. 
possesses no velocity components. In this scenario, the objective is now to determine the 
angular acceleration 𝛼 and the reaction forces 𝑅𝐴 and 𝑅𝐵 .     

 

 

 

Figure 4 Free-body diagram (FBD)  Figure 5 Kinetic diagram (KD) 
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Theory recap: From basic dynamics, it is recalled that the dynamics of rigid bodies are 
governing by the Newton-Euler equations 
∑𝐹𝑥 = 𝑚�̈�            ∑ 𝐹𝑦 = 𝑚�̈�          ∑𝑀 = 𝐼�̈� 9. 

A free-body diagram (FB) and a kinetic diagram (KD) would usually be applied to sketch the left 
and right hand side of the equations in order to ensure that force and kinematics properties are 
considered with the same sign conventions.  

Solution: Considering the FBD in Figure 4 and the KD in Figure 5, the force equilibriums arising 
from Newton’s 2nd law become 
∑𝐹𝑥 = 𝑚𝑎𝑥 = 𝑅𝐴 + 𝑃 10. 
∑𝐹𝑦 = 𝑚𝑎𝑦 = 𝑅𝐵 − 𝑚𝑔  11. 

The moment equilibrium arising from Euler’s law  of motion can be formulated around the C.o.G: 

∑𝑀𝐺 =𝐼𝐺𝛼 = 𝑅𝐴
𝐿

2
𝑠𝑖𝑛𝜃 − 𝑅𝐵

𝐿

2
𝑐𝑜𝑠𝜃 − 𝑃

𝐿

2
𝑠𝑖𝑛𝜃 12. 

Equations 10,11 and 12 yield three equations with five unknowns, 𝑎𝑥, 𝑎𝑦, 𝛼, 𝑅𝐴 and 𝑅𝐵  requiring 

us to come up with two algebraic equations based on kinematic constraints. However, if the 
parallel axis theorem is applied, the moment equilibrium can be formulated around any point. 
We will choose ‘the magic point’ D at the intersection point between the lines of actions of the 
reaction forces, eliminating those from the equations 

∑𝑀𝐷 =𝐼𝐺𝛼 − 𝑚(𝑎𝐺)𝑥
𝐿

2
𝑠𝑖𝑛𝜃 + 𝑚(𝑎𝐺)𝑦

𝐿

2
𝑐𝑜𝑠𝜃 = −𝑚𝑔

𝐿

2
𝑐𝑜𝑠𝜃 − 𝑃𝐿𝑠𝑖𝑛𝜃  13. 

This is the moment equilibrium which algebraically speaking is easiest to handle. In order to 
formulate kinematic constraints linking the kinematic parameters, the principle of relative 
motion from equation 3. Is applied at acceleration level 

 

 

 (
0

−𝑎𝐴
) = (

𝑎𝐵

0
) + (

𝛼𝐿𝑠𝑖𝑛𝜃
𝛼𝐿𝑐𝑜𝑠𝜃

) 

              → {
𝑎𝐴 = −𝛼𝐿𝑐𝑜𝑠𝜃
𝑎𝐵 = −𝛼𝐿𝑠𝑖𝑛𝜃

 

 

 
 
14. 

That didn’t entirely do the job, since we’re actually after the acceleration of the C.o.G. So we need 
to have another go 

 

(
(𝑎𝐺)𝑥

(𝑎𝐺)𝑦
) = (

𝑎𝐵

0
) + (

𝜔2 𝐿

2
𝑐𝑜𝑠𝜃

−𝜔2 𝐿

2
𝑠𝑖𝑛𝜃

) + (
𝛼

𝐿

2
𝑠𝑖𝑛𝜃

𝛼
𝐿

2
𝑐𝑜𝑠𝜃

)  

→ {
 (𝑎𝐺)𝑥 = 𝑎𝐵 + 𝛼

𝐿

2
𝑠𝑖𝑛𝜃 = −𝛼

𝐿

2
𝑠𝑖𝑛𝜃

(𝑎𝐺)𝑦 = 𝛼
𝐿

2
𝑐𝑜𝑠𝜃                                   

 

 
 
 
15. 

Now, algebraic equations linking 𝑎𝑥, 𝑎𝑦 and 𝛼 have been established. Substituting those into the 

moment equilibrium equation in equation 13. an expression for the angular acceleration 𝛼 is 
obtained  

∑𝑀𝐷 =𝐼𝐺𝛼 − 𝑚(𝑎𝐺)𝑥
𝐿

2
𝑠𝑖𝑛𝜃 + 𝑚(𝑎𝐺)𝑦

𝐿

2
𝑐𝑜𝑠𝜃 = −𝑚𝑔

𝐿

2
𝑐𝑜𝑠𝜃 − 𝑃𝐿𝑠𝑖𝑛𝜃  

          = (
1

12
𝑚𝐿2) 𝛼 − 𝑚 (−𝛼

𝐿

2
𝑠𝑖𝑛𝜃 )

𝐿

2
𝑠𝑖𝑛𝜃 + 𝑚 (𝛼

𝐿

2
𝑐𝑜𝑠𝜃 )

𝐿

2
𝑐𝑜𝑠𝜃  

          = (
1

12
𝑚𝐿2) 𝛼 + 𝑚

𝐿2

4
(𝛼𝑠𝑖𝑛2𝜃 + 𝛼𝑐𝑜𝑠2𝜃) 

          = (
1

12
𝑚𝐿2) 𝛼 + 𝑚

𝐿2

4
𝛼  

          = (
1

12
+

1

4
) 𝑚𝐿2𝛼 =

𝑚𝐿2

3
𝛼  

          →
𝑚𝐿2

3
𝛼 + 𝑚𝑔

𝐿

2
𝑐𝑜𝑠𝜃 + 𝑃𝐿𝑠𝑖𝑛𝜃 = 0  

         → 𝛼 = −
3

𝑚𝐿2 (𝑚𝑔
𝐿

2
𝑐𝑜𝑠𝜃 + 𝑃𝐿𝑠𝑖𝑛𝜃) = −36.3

𝑟𝑎𝑑

𝑠2  

 
 
 
 
 
16. 

This gives us the following acceleration components 



8 
 

(𝑎𝐺)𝑥 = −𝛼
𝐿

2
𝑠𝑖𝑛𝜃 = 12.6

𝑚

𝑠2  17. 

(𝑎𝐺)𝑦 = 𝛼
𝐿

2
𝑐𝑜𝑠𝜃 =  −7.3

𝑚

𝑠2  18. 

Now returning to the force equilibrium equations, we obtain the following two expressions for 
the reaction forces  
𝑅𝐴 = 𝑚𝑎𝑥 − 𝑃 =      50.7 𝑁 19. 
𝑅𝐵 = 𝑚𝑎𝑦 +  𝑚𝑔 = 30.7 𝑁 20. 

This has provided us with the angular acceleration and the reaction forces at the moment the 
rod is released  

2.2.2. Newton-Euler approach to EoM 
Problem description: The sliding rod with an end force considered in 2.2.1 will again be subject 
of analysis with the general equation of motion as objective. 

Solution: since we already figured out that the kinematics are required during our first take on 
this problem, we might as well start out straightening this out. In order to obtain kinematic 
constraints, the principle of relative motion will again be applied at acceleration level. However, 
the key difference from the previous problem is, that the angular acceleration no longer can be 
set to zero, since we’re not only after the initial values as the rod is released, but after the 
general equations of motion.  

 

 

 (
0

−𝑎𝐴
) = (

𝑎𝐵

0
) + ( 𝜔2𝐿𝑐𝑜𝑠𝜃

−𝜔2𝐿𝑠𝑖𝑛𝜃
) + (

𝛼𝐿𝑠𝑖𝑛𝜃
𝛼𝐿𝑐𝑜𝑠𝜃

) 

→ {
𝑎𝐴 = 𝜔2𝐿𝑠𝑖𝑛𝜃 − 𝛼𝐿𝑐𝑜𝑠𝜃

   𝑎𝐵 = −𝜔2𝐿𝑐𝑜𝑠𝜃 − 𝛼𝐿𝑠𝑖𝑛𝜃
 

 

 
 
21. 

Again, going for the acceleration of the center of gravity, we obtain 

 

(
(𝑎𝐺)𝑥

(𝑎𝐺)𝑦
) = (

𝑎𝐵

0
) + (

𝜔2 𝐿

2
𝑐𝑜𝑠𝜃

−𝜔2 𝐿

2
𝑠𝑖𝑛𝜃

) + (
𝛼

𝐿

2
𝑠𝑖𝑛𝜃

𝛼
𝐿

2
𝑐𝑜𝑠𝜃

)  

→ {
       (𝑎𝐺)𝑥 = 𝑎𝐵 + 𝜔2 𝐿

2
𝑐𝑜𝑠𝜃 + 𝛼

𝐿

2
𝑠𝑖𝑛𝜃

(𝑎𝐺)𝑦 = −𝜔2 𝐿

2
𝑠𝑖𝑛𝜃 + 𝛼

𝐿

2
𝑐𝑜𝑠𝜃

  

 
 
 
22. 

Now, the following two expressions for the linear accelerations of the C.o.G. can be obtained in 
terms of the angular acceleration 𝛼 

(𝑎𝐺)𝑥 = 𝑎𝐵 + 𝜔2 𝐿

2
𝑐𝑜𝑠𝜃 + 𝛼

𝐿

2
𝑠𝑖𝑛𝜃  

            = (−𝜔2𝐿𝑐𝑜𝑠𝜃 − 𝛼𝐿𝑠𝑖𝑛𝜃) + 𝜔2 𝐿

2
𝑐𝑜𝑠𝜃 + 𝛼

𝐿

2
𝑠𝑖𝑛𝜃  

            = −𝜔2 𝐿

2
𝑐𝑜𝑠𝜃 − 𝛼

𝐿

2
𝑠𝑖𝑛𝜃  

23. 

 (𝑎𝐺)𝑦 = −𝜔2 𝐿

2
𝑠𝑖𝑛𝜃 + 𝛼

𝐿

2
𝑐𝑜𝑠𝜃  24. 

the FBD in Figure 4 and the KD in Figure 5 are still valid. Applying the moment equilibrium, we 
obtain  

∑𝑀𝐷 =𝐼𝐺𝛼 − 𝑚(𝑎𝐺)𝑥
𝐿

2
𝑠𝑖𝑛𝜃 + 𝑚(𝑎𝐺)𝑦

𝐿

2
𝑐𝑜𝑠𝜃 = −𝑚𝑔

𝐿

2
𝑐𝑜𝑠𝜃 − 𝑃𝐿𝑠𝑖𝑛𝜃  

          = (
1

12
𝑚𝐿2) 𝛼 − 𝑚 (−𝜔2 𝐿

2
𝑐𝑜𝑠𝜃 − 𝛼

𝐿

2
𝑠𝑖𝑛𝜃 )

𝐿

2
𝑠𝑖𝑛𝜃 + 𝑚 (−𝜔2 𝐿

2
𝑠𝑖𝑛𝜃 + 𝛼

𝐿

2
𝑐𝑜𝑠𝜃 )

𝐿

2
𝑐𝑜𝑠𝜃  

          = (
1

12
𝑚𝐿2) 𝛼 + 𝑚

𝐿2

4
(𝜔2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 + 𝛼𝑠𝑖𝑛2𝜃 − 𝜔2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝛼𝑐𝑜𝑠2𝜃) 

          = (
1

12
𝑚𝐿2) 𝛼 + 𝑚

𝐿2

4
𝛼  

          = (
1

12
+

1

4
) 𝑚𝐿2𝛼 =

𝑚𝐿2

3
𝛼  

          →
𝑚𝐿2

3
𝛼 + 𝑚𝑔

𝐿

2
𝑐𝑜𝑠𝜃 + 𝑃𝐿𝑠𝑖𝑛𝜃 = 0  

         → 𝛼 +
3𝑔

2𝐿
𝑐𝑜𝑠𝜃 +

3𝑃

𝑚𝐿
𝑠𝑖𝑛𝜃 = 0                                    𝛼 = �̈� 

 
 
 
 
 
25. 
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         → �̈� +
3𝑔

2𝐿
𝑐𝑜𝑠𝜃 +

3𝑃

𝑚𝐿
𝑠𝑖𝑛𝜃 = 0                        

This is the equation of motion. It is more than just a tiny bit non-linear and we do not have a 
standard solution form available. However, it will later in section 2.2.5 show how these can be 
integrated numerically.  

2.2.3. Lagrandian approach to EoM  

Problem description: Again, the sliding rod problem from section 2.2.2 is considered with the 
equation of motion as objective. However, this time Lagrandian dynamics will be applied to 
obtain the equations of motion.  

Theory recap: When applying Lagrandian mechanics to obtain EoM, a set of generalized 
coordinates 𝑦𝑖  are chosen. On basis of the Lagrandian given by the kinetic energy minus the 
potential energy, the dynamic equilibrium can be determined as the stationary state of the 
Lagrandian.  Using calculus of variations, it can be shown, that this state is found as the state 
fulfilling the Euler-Lagrange equation 
 𝜕𝐿

𝜕𝑦𝑖
−

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) = 0           with Lagrandian 𝐿 = 𝑇 − 𝑈  

26. 
It is recalled that the kinetic energy for a rigid body is given by  

𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 =
1

2
𝑚𝑣2   𝑇𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =

1

2
𝐼𝐺𝜔2    𝑇 = 𝑇𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 27. 

While the work of external forces and moments are given by  
𝑊𝑃 = ∫𝑃𝑑𝑥    𝑊𝑀 = ∫𝑀𝑑𝜃     28. 
This work is related to potential energies for conservative force fields by  
𝑈𝑃 = −𝑊𝑃   𝑈𝑀 = −𝑊𝑀                 𝑈 = 𝑈𝑃 + 𝑈𝑀 
   

29. 

Solution: we will chose 𝜃 as generalized coordinate. This enables us to rewrite the coordinates 
of the C.o.G. as  
 𝑥𝐺 =

𝐿

2
𝑐𝑜𝑠𝜃                   𝑦𝐺 =

𝐿

2
𝑠𝑖𝑛𝜃 30. 

Time differentiation provides the component wise velocities  
 �̇�𝐺 = −

𝐿

2
𝑠𝑖𝑛𝜃 ∙ �̇�         �̇�𝐺 =

𝐿

2
𝑐𝑜𝑠𝜃 ∙ 𝜃 ̇  31. 

The kinetic energy is now given by  
 

𝑇 =
1

2
𝑚𝑣2 +

1

2
𝐼𝐺𝜔2 

    =
1

2
𝑚((�̇�𝐺)2 + (�̇�𝐺)2) +

1

2
𝐼𝐺𝜃 ̇ 2       

    =
1

2
𝑚 ((−

𝐿

2
𝑠𝑖𝑛𝜃 ∙ �̇� )

2
+ (

𝐿

2
𝑐𝑜𝑠𝜃 ∙ 𝜃 ̇ )

2
) +

1

2
(

1

12
𝑚𝐿2) 𝜃 ̇ 2        

    =
1

2
𝑚 (

𝐿

2
)
2
�̇�2(𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃) +

1

24
(𝑚𝐿2)𝜃 ̇ 2        

    =
1

2
𝑚 (

𝐿

2
)
2
�̇�2(𝑠𝑖𝑛2𝜃 + 𝑐𝑜𝑠2𝜃) +

1

24
(𝑚𝐿2)𝜃 ̇ 2      

    = 𝑚
𝐿2

8
�̇�2 + 𝑚

𝐿2

24
�̇�2  

    = 𝑚
𝐿2

6
�̇�2      

 
 
 
 
 

32. 

The potential energy is  
 𝑈 = 𝑚𝑔𝑦𝐺 − ∫ 𝑃𝑑𝑥  − ∫ 𝑀𝑑𝜃  

    = 𝑚𝑔 (
𝐿

2
𝑠𝑖𝑛𝜃) − 𝑃𝑥𝐺 − ∫ (−𝑃

𝐿

2
𝑠𝑖𝑛𝜃) 𝑑𝜃  

    = 𝑚𝑔 (
𝐿

2
𝑠𝑖𝑛𝜃) − 𝑃 (

𝐿

2
𝑐𝑜𝑠𝜃 ) − (𝑃

𝐿

2
𝑐𝑜𝑠𝜃)  

    = 𝑚𝑔 (
𝐿

2
𝑠𝑖𝑛𝜃) − 𝑃𝐿𝑐𝑜𝑠𝜃    

33. 

We may now define the Lagrandian  
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 𝐿 = 𝑇 − 𝑈 

   = 𝑚
𝐿2

6
�̇�2 − (𝑚𝑔 (

𝐿

2
𝑠𝑖𝑛𝜃) − 𝑃𝐿𝑐𝑜𝑠𝜃)    

= 𝑚
𝐿2

6
�̇�2 − 𝑚𝑔 (

𝐿

2
𝑠𝑖𝑛𝜃) − 𝑃𝐿𝑐𝑜𝑠𝜃  

 
34. 

Applying the Euler-Lagrange theorem for one variable, the following is obtained 
 𝜕𝐿

𝜕𝜃
= − 𝑚𝑔

𝐿

2
𝑐𝑜𝑠𝜃 − 𝑃𝐿𝑠𝑖𝑛𝜃 = − 𝑚𝑔

𝐿

2
𝑐𝑜𝑠𝜃 − 𝑃𝐿𝑠𝑖𝑛𝜃     

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�
) =

𝑑

𝑑𝑡
(
2

6
𝑚𝐿2�̇�) =

1

3
𝑚𝐿2�̈�   

 
35. 

 𝜕𝐿

𝜕𝜃
−

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�
) = − 𝑚𝑔

𝐿

2
𝑐𝑜𝑠𝜃 − 𝑃𝐿𝑠𝑖𝑛𝜃 −

1

3
𝑚𝐿2�̈� = 0  

→ �̈� +
3

2

𝑔

𝐿
𝑐𝑜𝑠𝜃 +

3𝑃

𝑚𝐿
𝑠𝑖𝑛𝜃 = 0     

 
36. 

This obviously corresponds to the EoM obtained in section 2.2.2. 

 

2.2.4. Computational MBD approach  

Problem description: We will now, for the last time consider the sliding rod with a constant 
end load from section 2.2.2, but this time we will base our analysis of the problem on methods 
for forward dynamics analysis of MBD systems from [2] and [3].   

Theory recap: We recall that forward dynamics analysis of constrained systems is performed 
based on a set of kinematic constraints on the form 

(𝜱) = 0 37. 

These can be considered related to the choice of generalized coordinates  in Lagrandian 
mechanics (for example equation 30), but apply for a point where constrains are added. On this 
basis we define the following quantities  

(�̇�) = [𝑫](�̇�) = 𝟎                   (𝜸) = −[�̇�](�̇�) 38. 

in which [𝑫] is the Jacobian matrix and (𝒒) is a set of generalized coordinates related to the body 
C.o.G. We will iteratively, by looping through time solve, the following linear system for each 
time step  

[
[𝑴] [𝑫]𝑻

[𝑫] 𝟎
] (

(�̈�)

(𝝀)
) = (

(𝒉)

(𝜸)
) 

39. 

In which (𝒉) contains external forces and [𝑴] ist he body mass matrix including the body inertia. 
This will provide the generalized accelerations (�̈�) and the corresponding velocities and 
accelerations can be found by numerical integration, see section 2.2.5. 

Solution: In order to fix the right and left end of the rod in the traces, the following two 
kinematic constrains are formulated and arranged onto the form applied in equation 37  
 𝑥𝐴 = 0: 𝑥𝐺 =

𝐿

2
𝑐𝑜𝑠𝜃

𝑦𝐵 = 0: 𝑦𝐺 =
𝐿

2
𝑠𝑖𝑛𝜃 

} → 𝚽 = (
𝑥𝐺 −

𝐿

2
𝑐𝑜𝑠𝜃

𝑦𝐺 −
𝐿

2
𝑠𝑖𝑛𝜃

) = 0    

 
40. 

The Jacobian matrix can now in accordance applying equation 38 
 

�̇� = (
�̇�𝐺 +

𝐿

2
𝑠𝑖𝑛𝜃 ∙ �̇�

�̇�𝐺 −
𝐿

2
𝑐𝑜𝑠𝜃 ∙ �̇�

) = 0 → [
1 0

𝐿

2
𝑠𝑖𝑛𝜃

0 1 −
𝐿

2
𝑐𝑜𝑠𝜃

](

�̇�𝐺

�̇�𝐺

�̇�

) = 0   

 
41. 

We now have 
 

[𝑫] = [
1 0

𝐿

2
𝑠𝑖𝑛𝜃

0 1 −
𝐿

2
𝑐𝑜𝑠𝜃

] → [�̇�] = [
0 0

𝐿

2
𝑐𝑜𝑠𝜃

0 0
𝐿

2
𝑠𝑖𝑛𝜃

]   

 
42. 

The remaining vectors and matrices required to solve equation 39 are now given by  
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[𝑴] = [
𝑚 0 0
0 𝑚 0
0 0 𝐼𝐺

]          (𝒉) = (

𝑃
−𝑚𝑔

−𝑃
𝐿

2
𝑠𝑖𝑛𝜃

)             (𝒒) = (

𝑥
𝑦
𝜃
) 

 
43. 

The numerical implementation of the derived equations is demonstrated in section 2.2.5. 

2.2.5. Comparison of results: forward dynamics 
Time integration of the analytical equations of motion 25 and 36 can be performed with various 
techniques. The most common solver for numerical solution of differential equations in time is 
the 4th order Runge-Kutta (in Matlab/Octave called ode45) with variable time steps. However, it 
is in many contexts of importance to write a simply solver. The first order Implicit-Euler scheme 
is often useful though requiring very small time steps, due to it’s simplicity.   

𝑣𝑖+1 = 𝑣𝑖 + 𝑎𝑖Δt 44. 

𝑟𝑖+1 = 𝑟𝑖 + 𝑣𝑖+1Δt 45. 

It is noted, that the updated velocity is used for updating the position making the method 
implicit. This will for most applications improve the accuracy from terribly (as in the Explicit-
Euler algorithm) to poor, but sufficient when using small time steps. 
The implementation of the MBD method from the previous example is shown in the following 
Matlab code example. Setting the length L=0.8 m, the mass m=12 kg and the initial angle 𝜃𝑖 =
60 𝑑𝑒𝑔, a solution can be obtained by numerical integration, see Figure 6 and Figure 7. As 
expected, the obtained solutions for the angle of the rod in time can be observed to correspond.  
 

  
Figure 6, Solution for 𝑃 = 0 Figure 7, Solution for 𝑃 = 100 
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%Sliding rod with end load, NEO, HSRW, 02.07.18 

clc; close all; clear all;  

%Model input section  

L=0.8;          %Rod length   

m=12;           %Rod mass 

theta_ini=60;   %Initial angle  

P=100;          %End load 

g=9.81;         %Gravity 

%Time integration section 

t_lim=1;        %Simulation time limit  

n=1000;         %Number of time integration points 

%Setup mass matrix  

M(3,3)=0; M(1,1)=m; M(2,2)=m; M(3,3)=1/12*m*L^2;  

%Setup time vector 

for i=1:n+1; t(i)=t_lim/n*(i-1); end; dt=t(2)-t(1);  

%Initialize position and velocity arrays  

q(1:3,n+1)=0; v(1:3,n+1)=0;  

%Set initial position values  

q(1:3,1)=[L/2*cosd(theta_ini);L/2*sind(theta_ini); theta_ini*pi/180];  

%Initialize Jacobian and it's time derivative 

D(2,3)=0;   D(1,1)=1;   D(2,2)=1;   dD(2,3)=0;  

  

for i=2:n+1;        %Time integration section 

    D(1,3)=L/2*sin(q(3,i-1));              D(2,3)=-L/2*cos(q(3,i-1)); 

    dD(1,3)=L/2*cos(q(3,i-1))*v(3,i-1);    dD(2,3)=L/2*sin(q(3,i-1))*v(3,i-1); 

    F=[P;-g*m;-P*L/2*sin(q(3,i-1))];       %Load vector 

    gamma=-dD*v(1:3,i-1);                  %Gamma array 

    X=inv([M,D';D,zeros(2,2)])*[F;gamma];  %Solve for accelerations 

    v(1:3,i)=v(1:3,i-1)+X(1:3)*dt;         %Integrate acc.  

    q(1:3,i)=q(1:3,i-1)+v(1:3,i)*dt;       %Integrate vel.  

    R1(i)=X(4); R2(i)=X(5);                %Reaction forces  

end 

  

%Integration of analytica EoM 

theta_a(n+1)=0; omega_a(n+1)=0; theta_a(1)=theta_ini*pi/180;  

for i=2:n+1; 

    alpha_a=-3*g/(2*L)*cos(theta_a(i-1))-3*P/(m*L)*sin(theta_a(i-1)) 

    omega_a(i)=omega_a(i-1)+alpha_a*dt; 

    theta_a(i)=theta_a(i-1)+omega_a(i)*dt;  

end 

     

figure; plot(t,q(3,:),'b',t,theta_a,'b.'); %Plot solutions 

legend('Computational MBD solution','Integration of analytical EoMs') 

xlabel('Time [s]'); ylabel('Angle $\theta$ [rad]') 

 
 

2.3. Calculated example: inverse dynamics with computational MBD 

Problem description: It turns out, that we are not entirely done with the sliding rod, since we 
have not yet considered how to conduct inverse dynamics analysis using computational MBD. It 
is recalled, that inverse dynamics refers to analyses, where a pre-defined  motion is used as basis 
for calculated of the forces required to obtain this particular motion. We will consider the same 
case as analyzed in section 2.1.1, where the lower B end is subjected to a constant linear velocity.  



13 
 

 
Figure 8 Inverse dynamics of a sliding rod with constant lower end velocity   

Theory recap: The theoretical background for inverse dynamics is described in detail by 
Nikravesh in [2] under the name the appended constraint method.  It is based  on the formulation 
of driver constraints additional to the kinematic constraints derived in section 2.2.4. The driver 
constraints defines the required motion and are appended to the constraint array and therefore 
handled in largely the same fashion as the kinematic constraints as shown below 

𝜱(𝒒)
(𝑑)

− 𝒇(𝑡) = 0 → (
𝜱(𝒒)

𝜱(𝒒)(𝑑) ) = (
𝟎

𝒇(𝑡)
) 

46. 

Differentiation of this equation, gives us 

�̇�(𝒒)
(𝑑)

= [𝑫](𝑑) (�̇�) − �̇�(𝑡) = 0 → [
[𝑫]

[𝑫](𝑑) ] (�̇�) = (
𝟎

�̇�(𝑡)
) 

47. 

[𝑫]
(𝑑)

(�̈�) + [�̇�]
(𝑑)

(�̇�) − �̇�(𝑡) = 0 → [
[𝑫]

[𝑫](𝑑) ] (�̈�) = (
−[�̇�](�̇�)

− [�̇�]
(𝑑)

(�̇�) + �̇�(𝑡)
) 1 

48. 

These equations can be observed to be on the conventional form we have applied for 
computational MBD this far. The constraint equations at position level in equation 46 are in 
general non-linear and requires analytical solutions or application of a numerical solver for non-
linear algebraic equations like for example the Newton-Raphson method. That’s the bad news. 
The good news are that the constraint equations at velocity and acceleration level in equation 47 
and 48 are linear after a solution at position level has been obtained and can be solved using 
conventional linear algebra. The forces required to obtain the motion can be obtained by solving  

[[𝑫]𝑇  [𝑫]𝑇
(𝑑)

] (
(𝝀)

(𝝀)
(𝑑) ) = [𝑴](�̈�) − (𝒉) 

49. 

in which (𝝀) are the reactions forces and (𝝀)
(𝑑)

 contains the driver forces.    

Solution: Applying the framework described above the sliding rod problem, the driver 
constraint can be formulated as 

𝑥𝐵 − 𝑓(𝑡) = 0: 𝑥𝐺 +
𝐿

2
𝑐𝑜𝑠𝜃 − 𝑓(𝑡)     with 𝑓(𝑡) = 𝑣𝐵𝑡 + 𝐿cos𝜃  50. 

 

 

                                                             
1 For reasons yet very unclear to your mechanics professor, Nikravesh himself claims that the driver 
Jacobian time derivative for most practical problems is zero and presents this equation on the form 

[
[𝑫]

[𝑫](𝑑) ] (�̈�) = (
−[�̇�](�̇�)

�̇�(𝑡)
) 

It has not yet been possible to identify a problem where this actually is the case and the full form in 
equation 48 should be applied. 
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All constraints for the motion of the rod can now using equation 46 be formulated as 

(
𝜱(𝒒)

𝜱(𝒒)(𝑑) ) =

(

 
 (

𝑥𝐺 −
𝐿

2
cos𝜃

𝑦𝐺 −
𝐿

2
sin𝜃

)

𝑥𝐺 +
𝐿

2
cos𝜃 − 𝑣𝐵𝑡 − 𝐿cos𝜃)

 
 

= 𝟎    

 
 

51. 

These equations are non-linear in 𝑥𝐺 , 𝑦𝐺  and 𝜃. For the sake of simplicity, we will solve those 
analytically by which we obtain 

𝜃 = acos(𝑐𝑜𝑠𝜃0 + 𝑣𝐵𝑡)        𝑥𝐺 =
𝐿

2
cos𝜃        𝑦𝐺 =

𝐿

2
sin𝜃 

The total Jacobian can be obtained by differentiation with respect to time  

(
�̇�(𝒒)

�̇�(𝒒)(𝑑) ) =

(

 
 (

�̇�𝐺 +
𝐿

2
sin𝜃�̇�

�̇�𝐺 −
𝐿

2
cos𝜃�̇�

)

�̇�𝐺 −
𝐿

2
sin𝜃�̇� − 𝑣𝐵)

 
 

→

[
 
 
 
 1 0

𝐿

2
sin𝜃

0 1 −
𝐿

2
cos𝜃

1 0 −
𝐿

2
sin𝜃]

 
 
 
 

(

�̇�𝐺

�̇�𝐺

�̇�

) = (
0
0
𝑣𝐵

)  

 
 

52. 

We now have the following matrices, allowing us to solve equation 47 and 48 using linear 
algebra 

[
[𝑫]

[𝑫](𝑑) ] =

[
 
 
 
 1 0

𝐿

2
sin𝜃

0 1 −
𝐿

2
cos𝜃

1 0 −
𝐿

2
sin𝜃]

 
 
 
 

→ [
[𝑫]̇

[𝑫]̇
(𝑑) ] =

[
 
 
 
 0 0

𝐿

2
cos𝜃�̇�

0 0
𝐿

2
sin𝜃�̇�

0 0 −
𝐿

2
cos𝜃�̇�]

 
 
 
 

  

 
 

53. 

This allows us to solve equation 49 and obtain the reactions and driver force applying gravity as 
only external force on basis of the following input 

[𝑴] = [
𝑚 0 0
0 𝑚 0
0 0 𝐼𝐺

]          (𝒉) = (
0

−𝑚𝑔
0

)             (𝒒) = (

𝑥
𝑦
𝜃
) 

 
54. 

 

 

2.3.1. Comparison of results: inverse dynamics 

The obtained results can be compared to the analytical model on basis of the angular velocity 
and acceleration derived in the previous sections 

𝜔 = −
𝑣𝐵

𝐿𝑠𝑖𝑛𝜃
          𝛼 = −𝜔2 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
= −

𝜔2

𝑡𝑎𝑛𝜃
 

In which the negative signs account for that positive now is defined as  the  clockwise direction 
for increasing 𝜃. The linear acceleration components of the center of gravity were determined to 
be  

       (𝑎𝐺)𝑥 = 𝑎𝐵 + 𝜔2 𝐿

2
𝑐𝑜𝑠𝜃 + 𝛼

𝐿

2
𝑠𝑖𝑛𝜃           (𝑎𝐺)𝑦 = −𝜔2 𝐿

2
𝑠𝑖𝑛𝜃 + 𝛼

𝐿

2
𝑐𝑜𝑠𝜃  

The driving force can be obtained  directly from the moment equilibrium 

∑𝑀𝐷 =𝐼𝐺𝛼 − 𝑚(𝑎𝐺)𝑥
𝐿

2
𝑠𝑖𝑛𝜃 + 𝑚(𝑎𝐺)𝑦

𝐿

2
𝑐𝑜𝑠𝜃 = −𝑚𝑔

𝐿

2
𝑐𝑜𝑠𝜃 − 𝑃𝐿𝑠𝑖𝑛𝜃  

And the reaction forces are finally calculated from Newton’s 2nd law 
∑𝐹𝑥 = 𝑚𝑎𝑥 = 𝑅𝐴 + 𝑃          ∑ 𝐹𝑦 = 𝑚𝑎𝑦 = 𝑅𝐵 − 𝑚𝑔 

The results obtained can be compared with the calculated (𝜆)’s, see Figure 9 and Figure 10 on 
basis of the code implementation shown on the following page. The results can as expected be 
observed to correspond. In principle, the calculated driver force in Figure 9 could be applied as 
input for a forward dynamics analysis using the method introduced in section 2.2.4 and would 
produce results where B moves at constant velocity.  
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Figure 9, Example of results, driver force P Figure 10, Example of results, reaction 𝑅𝐴 
 

 

%NHS/Liding Zhang-HSRW 

%Inverse dynamics of the sliding rod problem, 08.10.2020 

clc; close all; clear all;  

l=1.5;              %Rod length  

m=20;               %Rod mass 

g=9.81;             %Gravity 

theta0=60*pi/180;   %Initial angle 

v0=0.5;             %Velocity, B 

n=100;              %Number of time steps 

tlim=0.5;           %Time limit 

%Setup time vectors  

for i=1:n+1;t(i)=tlim/n*(i-1);end; dt=t(2)-t(1); 

%Initialize arrays 

q(n+1,3)=0; dq(n+1,3)=0; ddq(n+1,3)=0; 

qa(n+1,3)=0; dqa(n+1,3)=0; ddqa(n+1,3)=0; 

%Define mass matrix  

M(3,3)=0; M(1,1)=m; M(2,2)=m; M(3,3)=1/12*m*l^2;  
for i=1:n+1;  

    %Numerical solution 

    q(i,3)=acos(cos(theta0)+v0*t(i)); q(i,1)=l/2*cos(q(i,3));      

    q(i,2)=l/2*sin(q(i,3)); 

    D=[1,0,l/2*sin(q(i,3)); 0,1,-l/2*cos(q(i,3)); 1,0,-l/2*sin(q(i,3))]; 

    dq(i,:)=inv(D)*[0;0;v0]; 

    dD(1,:)=[0,0,l/2*cos(q(i,3))*dq(i,3)]; 

    dD(2,:)=[0,0,l/2*sin(q(i,3))*dq(i,3)]; 

    dD(3,:)=[0,0,-l/2*cos(q(i,3))*dq(i,3)]; 

    ddq(i,:)=inv(D)*[-dD(1:2,:)*dq(i,:)';-dD(3,:)*dq(i,:)']; 

    h=[0;-m*g;0]; 

    lambda(i,:)=inv(D')*(M*ddq(i,:)'-h); 

    %Analytical solution 

    qa(i,3)=acos(cos(theta0)+v0*t(i)); qa(i,1)=l/2*cos(q(i,3));        

    qa(i,2)=l/2*sin(q(i,3)); 

    dqa(i,3)=-v0/(l*sin(q(i,3))); 

    ddqa(i,3)=-dqa(i,3)^2/tan(q(i,3)); 

    ddqa(i,1)=dqa(i,3)^2*l/2*cos(q(i,3))+ddqa(i,3)*l/2*sin(q(i,3)); 

    ddqa(i,2)=-dqa(i,3)^2*l/2*sin(q(i,3))+ddqa(i,3)*l/2*cos(q(i,3)); 

    ddqa(i,2)=-dqa(i,3)^2*l/2*sin(qa(i,3))+ddqa(i,3)*l/2*cos(qa(i,3)); 

    P(i)=-(1/12*m*l^2*ddqa(i,3)-m*ddqa(i,1)*l/2*sin(qa(i,3))+… 

    m*ddqa(i,2)*l/2*cos(qa(i,3))+m*g*l/2*cos(qa(i,3)))/(l*sin(qa(i,3))); 

    Ax(i)=m*ddqa(i,1)-P(i); 

    By(i)=m*ddqa(i,2)+m*g; 

end 
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3. Vibrations and rotor dynamics  
 

3.1. Calculated example: Rotor dynamics  
The rotor system shown in Figure 11 will be subject to analysis in the chapter.  

 
Figure 11 Offset rotor system  
 

3.1.1. Analytical frequency calculation  

Problem description:  The mass of the rotor in the system shown in Figure 11 is m=12 kg, while 
the shaft is of length L=0.8 m with diameter d=15 mm and is made of steel with elastic modulus 
E=210 GPa and density 𝜌 = 7800 𝑘𝑔/𝑚3. The system operates at a service speed of n=1000 rpm. 
The shaft is supported in each end by a roller bearing with inner diameter 𝐷𝑖 = 18 𝑚𝑚, outer 
diameter 𝐷𝑜 = 24 𝑚𝑚 and 8 rolling elements.  
Determine:  

1. The frequency peaks, that would be enhanced in a frequency spectrum due to possible 
faults in the shaft-rotor system  

2. The lowest whirling (bending) frequency of the rotor system 
3. The log frequency (measuring rate) required for all possible bearing fault frequencies to 

be visible  

Theory recap: This is the part, where it has turned out to be really hard to find a good, or at 
least decent, textbook to recommend. For now, we’re stuck with the summaries contained in [4].  

Solution: Frequencies due to faults in shaft-rotor system  
The frequencies required, are the drive frequency proportional to the rpm-number along with 
it’s 2nd and 3rd order harmonics. These are 

𝑓𝑑𝑟 =
𝑛

60 𝑠
=

1000

60 𝑠
= 16.7 𝐻𝑧 

(rotating imbalance)  55. 

2 × 𝑓𝑑𝑟 = 33.3 𝐻𝑧 (misalignment) 56. 
3 × 𝑓𝑑𝑟 = 50.0 𝐻𝑧 (bent/cracked shaft)  57. 

These would be the peaks enhanced in a frequency spectrum due to the specific faults listed. 
However, it is noted, that the  drive  frequency along with the 2nd and 3rd order harmonics 
usually are visible, and application of these for machine diagnostics and fault detection is a 
matter of interpretation, where frequency spectrums commonly are compared to spectrums 
based on measurements from healthy systems or historical data.  
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Solution: Whirling frequency – applying Dunkerley’s formula    
In order determine the whirling frequency, the eigenfrequencies for the rotor and for the shaft 
will be calculated separately and finally combined. While multiple methods are available for this, 
only Dunkerley’s formula has this far been introduced, and we will for now stick to that. Our 
strategy, when considering the rotor separately, is to consider the rotor as a single DOF-system 
with spring stiffness calculated on basis of shaft stiffness, i.e. this is dependent on where on the 
shaft the rotor is mounted. In order to calculate the stiffness term, Bernoulli-Euler beam theory 
will be applied (see the standard solution to deflection problems in appendix A). We all know 
what that means … we better start out by calculating the cross-sectional constants A (area) and I 
(2nd order area moment of inertia) for the shaft:      

𝐴 =
𝜋

4
𝑑2 =

𝜋

4
(0.015 𝑚)2    = 1.77 ∙ 10−4 𝑚2 58. 

𝐼 =
𝜋

64
𝑑4 =

𝜋

64
(0.015 𝑚)4 = 2.49 ∙ 10−9𝑚4 59. 

The deflection for 𝑥 = 𝐿/3 where the rotor is mounted is for a simply supported beam with 
offset concentrated load P in accordance with appendix A, case c, given by 

𝛿𝐵 =
𝑎2𝑏2

3𝐸𝐼𝐿
𝑃        𝑎 =

𝐿

3
, 𝑏 =

2𝐿

3
 60. 

This expression can be re-arranged to 

𝑃 =
3𝐸𝐼𝐿

𝑎2𝑏2 𝛿𝐵 =
3𝐸𝐼𝐿

(
𝐿

3
)
2
(
2𝐿

3
)
2 𝛿𝐵  61. 

The stiffness term is recognized as the proportionality factor and can now be calculated by 

𝑘𝑠 =
3𝐸𝐼𝐿

(
𝐿

3
)
2
(
2𝐿

3
)
2 =

3∙2.1∙109𝑁/𝑚2∙2.49∙10−9𝑚4∙0.8𝑚

(
0.8𝑚

3
)
2
(
2∙0.8𝑚

3
)
2 = 6.19 ∙ 104 𝑁

𝑚
   

62. 

The circular eigen-frequency for the single DOF-system obtained considering solely the rotor is 

𝜔𝑛
(𝑟𝑜𝑡𝑜𝑟)

= √
𝑘𝑠

𝑚
= √

6.19∙104𝑁

𝑚
 

12 𝑘𝑔
= 71.8

𝑟𝑎𝑑

𝑠
  

 
63. 

Now that was the difficult part. Considering the shaft separately, this is contrary to the rotor, a 
continuous system, since mass and stiffness are not concentrated terms but have a spatial 
distribution. The circular eigen-frequency for a simply supported beam was introduced in [5] on 
analytical form   

𝜔𝑛
(𝑠ℎ𝑎𝑓𝑡)

= 𝐶√
𝐸𝐼

𝑆𝐿4      𝑆 = 𝐴𝜌   𝐶 = 9.87 (simply supported)      
 
 

64. 
                                             = 9.87√

𝐸𝐼

𝑆𝐿4 = 9.87√
2.1∙109𝑁/𝑚2∙2.49∙10−9𝑚4

7800
𝑘𝑔

𝑚3∙1.77∙10−4 𝑚2(0.8𝑚)4
= 300

𝑟𝑎𝑑

𝑠
  

Dunkerley’s formula can now be applied, in order to determine the total circular frequency of 
the system including both rotor and shaft 

1

(𝜔𝑛)2
=

1

(𝜔𝑛
(𝑟𝑜𝑡𝑜𝑟)

)
2 +

1

(𝜔𝑛
(𝑠ℎ𝑎𝑓𝑡)

)
2  

=
1

(71.8
𝑟𝑎𝑑

𝑠
)
2 +

1

(300
𝑟𝑎𝑑

𝑠
)
2  

→ 𝜔𝑛 = 69.8
𝑟𝑎𝑑

𝑠
 

 
 

65. 

The corresponding natural frequency of the system, which can be observed in a frequency 
spectrum from the system, if this in stationary state is subjected to an impact test (hit with a 
hammer!), is given by  

𝑓𝑛 =
𝜔𝑛

2𝜋
= 11.1𝐻𝑧 66. 

It is noted that the lowest whirling frequency is lower than the drive frequency calculated in 
equation 55 meaning that the system operates over-critically when running at service speed. For 
poorly damped systems, this must be accounted for during run-up, since a drive frequency close 
to the whirling frequency will produce whirling with very large amplitudes, that are likely to 
cause damage to the system.   
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Solution: Bearing fault frequency log-rate  
We know from the Nyquist criterium, that a measuring frequency of twice the frequency to be 
measured is required as minimum log. rate in order for frequencies to me visible in a frequency 
spectrum. As consequence, all bearing frequencies must be calculated, and we set the log rate to 
twice the maximum fault frequency. In order to do so, the diameters of the bearing cage and 
each rolling element is calculated as our first move 

𝐷 =
𝐷𝑜+𝐷𝑖

2
= 21 𝑚𝑚  

𝑑 =
𝐷𝑜−𝐷𝑖

2
= 3 𝑚𝑚  

(Cage diameter) 
 
(Rolling element diameter) 

67. 

The cage frequency is now calculated 

𝑓𝑐 =
𝜔𝑐

2𝜋
= =

1

2
𝑓𝑖 (1 −

𝑑

𝐷
) = 7.1 𝐻𝑧 (Cage frequency 

 – early wear indicator)  
68. 

The frequencies due to defects and cracks on the inner race, outer race and rolling elements are 

𝑓𝑏𝑝𝑓𝑖 =
𝑁(𝑓𝑖)(1+

𝑑

𝐷
)

2
= 76.2 𝐻𝑧  

(Ball-pass frequency – inner race) 69. 

𝑓𝑏𝑝𝑓𝑜 =
𝑁(𝑓𝑖)(1−

𝑑

𝐷
)

2
= 57.1 𝐻𝑧  

(Ball-pass frequency – outer race) 70. 

𝑓𝑏𝑠𝑓 =
(𝑓𝑖)

2

𝐷

𝑑
(1 − (

𝑑

𝐷
)
2
) = 57.1 𝐻𝑧  

𝑓𝑏𝑝𝑓 = 2𝑓𝑏𝑠𝑓 = 114.3 𝐻𝑧 

(Ball-spin frequency)  
 
(Ball-pass frequency)  

71. 

The ball-pass frequency encountered due to a defect on a rolling elements passing the bearing 
races, is observed to be the maximum frequency obtained. The log rate is therefore 

𝑓𝑙𝑜𝑔 = 2𝑓𝑚𝑎𝑥 = 2𝑓𝑏𝑝𝑓 = 228.6 𝐻𝑧 (Nyquist criteria - log. rate) 72. 

                                     

3.1.2. Calculation of whirling (bending) eigenfrequencies by FEA 

The classical methods for calculation of whirling frequencies described in the previous section 
are often useful for smaller systems. However, for larger systems it turns out to be rather 
convenient to be able to use matrix-methods. Having done this already with all relevant theory 
summarized in [5], there’s no reason to recap everything, since we already know that the 
undamped system will have an equation of motion on the form 

[𝐌]{�̈�} + [𝐊]{𝒙} = 0 73. 
In order to find the eigen-frequencies (𝜔𝑛) and the corresponding eigen-modes {𝒙}𝑚 , the 
following eigen-value problem must be solved  

([𝐊] − (𝜔𝑛)2[𝐌]){𝒙}𝑚 = 0 74. 
So we are going to need a stiffness- and a mass matrix for the rotor system in Figure 11. The 
discretization shown in Figure 12 will be applied. The system is split into three nodes each with 
a vertical translation and a rotation DOF, so each element-wise matrix is of size four by four 
(since the longitudinal displacement DOF is omitted). This yields two elements and a point mass 
where the rotor is mounted. The system is constrained by eliminating the translational 
displacement DOF’s on node 1 and 3 (DOF’s 1 and 5 in the unconstrained system) leaving us 
with a constrained system with four DOF’s corresponding to the size of the global stiffness and 
mass matrices.  

 
Figure 12 Offset rotor system, FEA idealization of the system shown in Figure 11 
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Due to our laziness … or awesomeness (not quite sure), we can simply write two functions, 
kElem and mElem for generation of the element-wise stiffness- and mass matrices on basis of 
the element properties (see Appendix B). Having those available, the Matlab-code below 
generate and solve the eigenvalue problem. The lowest whirling frequency is determined to be 
11.1 Hz corresponding well to the value obtained analytically in equation 66. 

 
clc; close all; clear all;  

%Define system parameters  

L=0.8;          %Shaft length 

d=0.015;        %Shaft diam.  

E=2.1*10^11;    %Module of elasticity 

rho=7800;       %Density  

m=12;           %Rotor mass  

%Calculate cross-sectional constants for shafts  

A=pi/4*d^2;     I=pi/64*d^4;  

%Initialize K and M  

K(6,6)=0;       M(6,6)=0; 

%Add first element 

K(1:4,1:4)=K(1:4,1:4)+kElem(E,I,L/3); 

M(1:4,1:4)=M(1:4,1:4)+mElem(rho,A,L/3); 

%Add second element  

K(3:6,3:6)=K(3:6,3:6)+kElem(E,I,2*L/3); 

M(3:6,3:6)=M(3:6,3:6)+mElem(rho,A,2*L/3); 

%Add rotor mass 

M(3,3)=M(3,3)+m; 

%Implement constraints (displacement of node 1 and 3) 

K(5,:)=[]; K(:,5)=[]; M(5,:)=[]; M(:,5)=[];  

K(1,:)=[]; K(:,1)=[]; M(1,:)=[]; M(:,1)=[];  

%Solve eigen-value problem  

[Modes,EigVals]=eigs(K,M) 

NatFrq=sqrt(EigVals(1,1))/(2*pi) 

                 

Since the mode shapes are now available in form of the eigen-vectors, we might as well plot 
those. The code below will do this based on a cubic interpolation function CubeInt (see 
Appendix B). The mode shapes are shown in Figure 13. These represent the physical forms by 
which the shaft with vibrate when passing the corresponding eigen-frequencies during run-up. 
 
  

MNum=1; %Plot mode shape 

C1=CubeInt(0,0,Modes(1,MNum),L/3,Modes(2,MNum),Modes(3,MNum)); 

C2=CubeInt(L/3,Modes(2,MNum),Modes(3,MNum),L,0,Modes(4,MNum)); 

%Evaluate and plot the obtained solution over the length of the beam  

n=100; 

    for i=1:n+1 

x1(i)=(L/3)/n*(i-1);                                          

y1(i)=C1(1)*x1(i)^3+C1(2)*x1(i)^2+C1(3)*x1(i)+C1(4);   

    end 

    for i=1:n+1 

x2(i)=(2*L/3)/n*(i-1)+L/3        

y2(i)=C2(1)*x2(i)^3+C2(2)*x2(i)^2+C2(3)*x2(i)+C2(4);     

    end 

 figure; plot(x1,y1,'b-',x2,y2,'r');    %Plot deflections in new window  

 xlabel('Length position along beam [m]') 

 ylabel(['Mode Shape ' num2str(MNum)]) 

 grid on 
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Figure 13 Mode shapes for the analyzed rotor system, see Figure 11 
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Appendix A: Max. defections for beam problems  
a. 

 

𝛿𝐹 =
𝑃𝑎3𝑏3

3𝐸𝐼𝐿3   

b. 

 

𝛿𝐹 =
𝑃𝐿3

192𝐸𝐼
  

c. 

 

𝛿𝐹 =
𝑃𝑎2𝑏2

3𝐸𝐼𝐿
  

d. 

 

𝛿𝐹 =
𝑃𝑙3

48𝐸𝐼
  

e. 

 

𝛿𝐹 =
𝑃𝑎2𝑏3

12𝐸𝐼𝐿3
(3𝐿 + 𝑎)   

f. 

 

𝛿𝑆 =
𝑃𝑎𝐿2

9√3𝐸𝐼
   

(max. deflection between supports) 

𝛿𝐹 =
𝑃𝑎2

3𝐸𝐼
(𝐿 + 𝑎)   

(max. deflection – overhang) 
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Appendix B: Calculation of rotor-eigenfrequencies using FEA  

function Output=kElem(E,I,L_elem); 

    k_elem(1,1)=12*E*I/L_elem^3;  k_elem(1,2)=6*E*I/L_elem^2; 

    k_elem(1,3)=-12*E*I/L_elem^3; k_elem(1,4)=6*E*I/L_elem^2; 

    k_elem(2,1)=6*E*I/L_elem^2;   k_elem(2,2)=4*E*I/L_elem;   

    k_elem(2,3)=-6*E*I/L_elem^2;  k_elem(2,4)=2*E*I/L_elem; 

    k_elem(3,1)=-12*E*I/L_elem^3; k_elem(3,2)=-6*E*I/L_elem^2; 

    k_elem(3,3)=12*E*I/L_elem^3;  k_elem(3,4)=-6*E*I/L_elem^2; 

    k_elem(4,1)=6*E*I/L_elem^2;   k_elem(4,2)=2*E*I/L_elem;   

    k_elem(4,3)=-6*E*I/L_elem^2;  k_elem(4,4)=4*E*I/L_elem; 

    Output=k_elem;  

 

 

function Output=mElem(rho,A,L_elem)  

    m_Elem(1,1)=156;         m_Elem(1,2)=22*L_elem;      

    m_Elem(1,3)=54;          m_Elem(1,4)=-13*L_elem; 

    m_Elem(2,1)=m_Elem(1,2); m_Elem(2,2)=4*L_elem^2;   

    m_Elem(2,3)=13*L_elem;   m_Elem(2,4)=-3*L_elem^2; 

    m_Elem(3,1)=54;          m_Elem(3,2)=m_Elem(2,3);     

    m_Elem(3,3)=156;          m_Elem(3,4)=-22*L_elem;  

    m_Elem(4,1)=m_Elem(1,4);  m_Elem(4,2)=m_Elem(2,4);   

    m_Elem(4,3)=m_Elem(3,4);   m_Elem(4,4)=m_Elem(2,2); 

    Output=rho*A*L_elem/420*m_Elem; 

 

  

function Output=CubeInt(x1,y1,tht1,x2,y2,tht2)  

    CoefMat(1:4,1:4)=0;    %Initialize array 

    %Setup coefficient matrix and right-hand-side vector 

    CoefMat(1,:)=[x1^3,x1^2,x1,1]; CoefMat(2,:)=[x2^3,x2^2,x2,1]; 

    CoefMat(3,:)=[3*x1^2,2*x1,1,0];CoefMat(4,:)=[3*x2^2,2*x2,1,0]; 

    B=[y1;y2;tht1;tht2]; 

    Output=CoefMat\B;  
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