

Handbook of Modules for the Study Course Bioengineering, B.Sc.

March 2021

valid for all students enrolled from WS 2019/20 onwards

The most important details

Duration: 7 semesters full-time, 9 semesters part-time Location: Kleve Qualification: Bachelor of Arts, B.A. Course start: annually in the winter term Language: English Minimum of 8 weeks working full time before the beginning of the 4th semester, longer practical experience in natural sciences, engineering, **Preparatory internship:** organisational and/or economical topics, also in the areas of production or medical institutions with reference to biotechnology/bioengineering Internship/ study abroad: in the 6th semester in the second half of the 7th semester (full time) **Bachelor thesis:** in the 9th semester (part time) Calculation of workload: 1 CP equals 30 hours per semester all examination types as detailed in §14, 17–20 **Examinations:** General Examination Regulations for Bachelor Degree Programmes Literature mentioned in the module descriptions are first recommendations and do not replace the Literature: syllabus of the module. The module coordinators assume as a rule that the titles specified always refer to the most current version. Attendance of all seminars, exercises and lab Attendance: courses is mandatory.

This programme is accredited by

ZBE_07 Z GBE_02 FBE_03 BBE_04 M M BBE_05 II	Modules/Module Cell Biology and Microbiology Ealibiologie und Mikrobiologie Fundamentals of Chemistry Grundlagen der Chemie Bioengineering Physics I Bioengineering Physik I Mathematics	Requirements Modulvoraus- setzungen	sws	L/V	s	E/Ü	LC/Pr	Pro	graded/	attestat ion/	CP*			WT/ WS 3		WT/ WS5		WT/ WS7
E_01 C ZZ E_02 F E_03 B E_04 M E_05 Ir Ir Ir Ir Ir Ir Ir Ir Ir Ir Ir Ir Ir I	Zellbiologie und Mikrobiologie Fundamentals of Chemistry Grundlagen der Chemie Bioengineering Physics I Bioengineering Physik I Mathematics								benotet	Testat								
E_02 F G G G G G G G G G G G G G G G G G G	Fundamentals of Chemistry Grundlagen der Chemie Bioengineering Physics I Bioengineering Physik I Mathematics		4	2			2		Р	Т	5	4						
E_03 BB	Bioengineering Physics I Bioengineering Physik I Mathematics		4	2			2		Р	Т	5	4						
E_04 N N E_05 Ir Ir E_06 B G E_07 G E_08 A E_09 B	Mathematics		4	2		1	1		P	Т	5	4						
E_05 Ir Ir E_06 B G E_07 G E_08 A A E_09 B			6	2	1	3			P	•	5	6						
E_05 Ir E_06 B E_07 G E_08 A E_09 B B	Mathematik nternational Project Management								Г	-								
E_08	nternationales Projektmanagement Basics of Economic Sciences and Law		5	1	3	1				Т	5	5						
E_07 G E_08 A A E_09 B	Grundlagen der Wirtschafts- und Rechtswissenschaften		5	1	3	1			Р		5	5						
E_08 A E_09 B	Genetics and Molecular Biology Genetik und Molekularbiologie	BE_01	4	2			2		Р	T	5		4					
E_09	Applied Chemistry Angewandte Chemie	BE_02	6	2	1	2	1		Р	T	5		6					
	Biochemistry Biochemie	BE_02	4	2			2		Р	Т	5		4					
	Bioengineering Physics II	BE_03	4	2		1	1		Р	Т	5		4					
F 11	Bioengineering Physik II Applied Microbiology	BE_01	4	2			2		Р	т	5		4					
F 12 A	Angewandte Mikrobiologie Applied Mathematics	BE_04	4	2		2			Р		5		4					
A	Angewandte Mathematik Physical Chemistry	BE 03								-			7					
E_13 P	Physikalische Chemie nstrumental Analytics	BE_10	4	2		1	1		Р	T	5			4				
E_14 r	nstrumentelle Analyse	BE_03	4	2		2			Р		5			4				
E_15 N	Measurement and Control Engineering Mess- und Regelungstechnik	BE_04	3	2		1			Р		5			3				
E 16 P	Process Engineering Chemische Verfahrenstechnik	BE_04	6	2		2	2		Р	Т	5			6				
F 17 C	Current Topics in Biology Aktuelle Themen der Biologie		4		4					Т	5			4				
E 18	Data Analysis and Applied Statistics		4		2			2	Р		5			4				
F 19 B	Datenanalyse und angewandte Statistik Bioprocess Engineering	BE_11	4	2			2		P	Т	5				4			
B	Bioverfahrenstechnik Enzyme Engineering	BE_16			4	1	_		P									
В	Enzym Engineering Project	BE_09	4	2	1	1			Р		5				4			
E_21 P	Projekt Bioinformatics	BE_05	4					4		Т	5				4			
E_22 B	Bioinformatik	BE_04	4	2		2			Р		5				4			
	Elective modules 1 Wahlpflichtkatalog 1		8	4	4				Р		10				8			
	Downstream Processing Produktaufarbeitung	BE_09 BE_19	4	2	2				Р		5					4		
F 25 Ir	ndustrial Biotechnology ndustrielle Biotechnologie	BE_09 BE_11	4	2	2				Р		5					4		
_ oc lr	ntegrated Management Systems and Quality Management	DE_III	4	1	2	1			Р		5					4		
	ntegrierte Managementsysteme und Qualitätsmanagement Elective modules 2		12	4	4	4			P		15					12		
V Ir	Wahlpflichtkatalog 2 Internship or study abroad	min. 90 ECTS	12	7	7	7			-	-						12	.,	
E_28 P	Praxissemester oder Auslandstudiensemester Academic Methods and Principles	**								Т	30						Х	
E_29 V	Wissenschaftliches Arbeiten		4		2	2				T	5							4
F_30 V	Elective Modules 3 Wahlpflichtkatalog 3		8		4			4		Т	10							8
	Bachelor Thesis Bachelorarbeit	min. 180 ECTS							Р		12							х
	Colloquium Kolloquium	207 ECTS							Р		3							Х
	total credit hours // Semesterwochenstunden		139	49	35	27	18	10				28	26	25	24	24	0	12
												30	30	30 150	30	30	30 6	30 60
										Cred	it Points				210			
	Abbreviations: // Abkürzungen										gesamt			3.Sem				
	CH = credit hours per week // SWS = Semesterwochenstund WS = winter term // Wintersemester	len							SWS CP		139 210	28 30	26 30	25 30	24 30	30	30	12 30
	SS = summer term // Sommersemester Ex/Prü = type of examination // Prüfungsart																	
C	CP = credit points (= ECTS-points)																	
	_/V = Lecture // Vorlesung E/Ü = exercise // Übung																	
	LC/Pr = lab course // Praktikum																	
	Pro = project // Projekt																	
	T = certificate // Testat (unbenotet) P = examination (marked) // benotete Prüfung																	
	ECTS will only be credited after completing all parts of the m ECTS werden erst nach vollständigem Ableisten aller Modulte																	
	=CTS werden erst nach vollstandigem Ableisten aller Modulte ** In addition to the General Examination Regulations for Bac			mmes i	egardir	na the s	dmisei	on to t	he internel	nip or stu	dv ahma	the et	udent F	nas to e	how th	e succ	essful	
С	completion of all modules/module examinations of the first st	udy year of the s	tudy pr	ogramn	ne.	-					-							
E	Ergänzend zu den Voraussetzungen der Rahmenprüfungsord Module/Modulprüfungen des 1. Studienjahres des Studiengar	nung zur Zulassu	ıng zur			Auslar	dsstud	iensen	nester hat	der/die S	tudierend	le das e	erfolgre	iche Ab	leisten	sämtli	cher	

						Туре			Ex/	Prü		
									graded/	attestat	CP*	
	Elective modules 1 Wahlpflichtkatalog 1		СН	L/V	S	E/Ü	LC/Pr	Pro	benotet	ion/ Testat		
BE_23.1	Technical enzymology and Biocatalysis		4		4				Р		5	
	Technische Enzymologie und Biokatalyse Agricultural Biotechnology and Biofuels		4		4				Р			
BE_23.2	Grüne Biotechnologie und Biotreibstoffe		4		4						5	
BE_23.3	Nanobiotechnology Nanobiotechnologie		3	3					Р		5	
BE_23.4	Fluid Mechanics and Systems Dynamics Strömungsmechanik und Systemdynamik		4	2			2		Р	Т	5	*
BE_23.5	Module from any bachelor study course of Faculty of Life Sciences at Rhine-Waal University of Applied Sciences Wahlmöglichkeit Angebot Fakultät Life Sciences Bachelorstudiengänge		4	4					P		5	***
	2 elective modules amount to		8								10	
					ı	Type	1	I	Ex/	Prü I		
	Elective modules 2		СН	L/V	s	E/Ü	LC/Pr	Pro	graded/ benotet	attestat ion/ Testat	CP*	
BE_27.1	Wahlpflichtkatalog 2 Metabolic Engineering		4		4				Р		5	
	Metabolic Engineering Biological Physics				4							*
BE_27.2	Biologische Physik		4	2			2		Р	Т	5	*
BE_27.3	Environmental Biotechnology and Microalgae Umweltbiotechnologie und Mikroalgen		4		4				Р		5	
BE_27.4	Pharmaceutical Biotechnology and Immunology Pharmazeutische Biotechnologie und Immunologie		4	4					Р		5	
BE_27.5	Biopolymers		4	2	1		1		P	Т	5	*
J	Biopolymere Module from any bachelor study course of Faculty of Life			_					·	·	,	
BE_27.6	Sciences at Rhine-Waal University of Applied Sciences Wahlmöglichkeit Angebot Fakultät Life Sciences Bachelorstudiengänge		4	4					Р		5	***
	3 elective modules amount to		12								15	
									Fv/	Prü		
						Type	I	1				
	Elective modules 3			L/V	s	E/Ü	LC/Pr	Pro	graded/	attestat ion/	CP*	
	Wahlpflichtkatalog 3		sws						benotet	Testat		
BE_30.1	Project reg. Academic Principles and Methods in preparation of Bachelor Thesis Projekt zum Wissenschaftlichen Arbeit in der Vorbereitung		8					8		Т	10	
BE_30.2	der Bachelorarbeit Language Course		4			4				Т	5	***
JE_50.Z	Sprachkurs Module from catalogue 1 and 2 of study programme		4			4				'	3	
3E_30.3	Wahlmöglichkeit aus Wahlpflichtkatalog 1 und 2 des Studiengangs		4	4					Р		5	
BE_30.4	Module from any Bachelor Study Course at Rhine-Waal University of Applied Sciences Wahlmöglichkeit Angebot HRW Bachelorstudiengänge		4	4					Р		5	***
	1-2 elective modules amount to		8								10	
	The faculty reserves the right to determine a minimum numb mandatory modules is subject to available capacities. The pounaffected. / Die Fakultät behält sich das Recht vor, eine Mir Wahlpflichtkurses festzulegen. Die Zulassung zu Pflichtmodu	ossibility to obtain ndestteilnehmerzaulen erfolgt vorbeh	n the re ahl für d naltlich	quired las Zus	number standek (apazita	r of cred commer aten. Di	dit point n eines ie Mögl	ts rema	des			
	In case of new developments in the different fields of Bioengir modules by further study courses over the time. / Die Fakulti neuen Entwicklungen in verschiedenen Feldern der Biotechne	ät behält sich vor,	das W	ahlpflic	chtange	bot im						
	*** The actual selection from any study programme of the Rh Committee of the Faculty of Life Sciences. / Die konkrete Au Prüfungsausschussvorsitzenden.											

Table of Contents

The most important details	2
BE_01 Cell Biology and Microbiology	7
BE_02 Fundamentals of Chemistry	9
BE_03 Bioengineering Physics I	11
BE_04 Mathematics	13
BE_05 International Project Management	15
BE_06 Basics of Economic Sciences and Law	17
BE_07 Genetics and Molecular Biology	19
BE_08 Applied Chemistry	21
BE_09 Biochemistry	23
BE_10 Bioengineering Physics II	25
BE_11 Applied Microbiology	27
BE_12 Applied Mathematics	29
BE_13 Physical Chemistry	31
BE_14 Instrumental Analytics	33
BE_15 Measurement and Control Engineering	35
BE_16 Process Engineering	37
BE_17 Current Topics in Biology	39
BE_18 Data Analysis and Applied Statistics	41
BE_19 Bioprocess Engineering	43
BE_20 Enzyme Engineering	45
BE_21 Project	47
BE_22 Bioinformatics.	49
BE_23.1 Technical Enzymology and Biocatalysis	51
BE_23.2 Agricultural Biotechnology and Biofuels	53
BE_23.3 Nanobiotechnology	55
BE_23.4 Fluid Mechanics and Systems Dynamics	57
BE_23.5 Module from any Bachelor Study Course at Faculty of Life Sciences at Rhine-Was University of Applied Sciences	
BE_24 Downstream Processing	61
BE_25 Industrial Biotechnology	63
BE_26 Integrated Management Systems and Quality Management	65
BE_27.1 Metabolic Engineering	67
BE_27.2 Biological Physics	69
BE_27.3 Environmental Biotechnology and Microalgae	71
BE_27.4 Pharmaceutical Biotechnology and Immunology	73
BE 27.5 Biopolymers	75

_	Module from any Bachelor Study Course at Faculty of Life Science at Rhine-Waal University of Applied Sciences	77
BE_28	Internship or Study Abroad	79
BE_29	Academic Methods and Principles	81
BE_30.1	Project reg. Academic Principles and Methods in Preparation of Bachelor Thesis	83
BE_30.2	Language Course for Students (Without Previous Knowledge)	85
BE_30.3	Module from Catalogue Elective Modules 1 and 2 of Study Course Bioengineering	87
	Module from any Bachelor Study Course at Rhine-Waal University of Applied Sciences	89
BE_31	Bachelor Thesis	91
BE_32	Colloquium	93

BE_01 Cell Biology and Microbiology

1 (full time)

Study Semester: 1 (part time) Credit Points (ECTS): 5

1 (cooperative)

Workload

	Contact time		Self-study	
Lecture		30 h	Preparation for contact time	30 h
Lab course		30 h	Literature review	20 h
			Preparation for exams	40 h
Sum		60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Mònica Palmada Fenés

Lecturers

Prof. Dr. Joachim Fensterle; Prof. Dr. Mònica Palmada Fenés

Teaching contents

Lecture:

Cell biology: anatomy of pro- and eukaryotic cells; structure and function of subcellular components and cell organelles; growth and metabolism (respiration, fermentation, photosynthesis); protein synthesis and sorting; movement and motility; cells and tissues

Microbiology: introduction: Microbial evolution, microorganisms and humans, historical milestones; structure and function of prokaryotes: morphology, cell wall, structures and locomotion, physiological basics; taxonomy of microorganisms; growing microorganisms, killing microorganisms, detecting and analysing microorganisms; selected examples

Lab course:

Cell biology: accurate pipetting of liquids, serial dilution, sterile technique; basic techniques in mammalian cell culture; transfection of mammalian cells; microscopic examination of eukaryotic cells; fluorescent labelling of organelles

Microbiology: basic techniques in microbiology; sterile technique; Gram's staining; measuring bacterial growth phases and generation time; assessing an antibiotic's minimal inhibitory concentration (MIC); transformation of bacteria; selection and screening of transformed bacteria

Learning objectives

On successful completion of this module, students should

- know important principles of cellular processes and their related structures¹
- understand the major principles of energy generation in biological systems²
- be able to classify major microbial groups and know their practical relevance²
- be able to challenge beneficial and adverse effects of microorganisms³
- be able to apply the principles of sterile working³
- be able to write scientific lab protocols in an adequate manner⁴

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises; lab work

Entrance requirements

Mandatory: None

Recommended: None

Reading list

Alberts: Molecular Biology of the Cell Brock: Biology of Microorganisms

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	X		
Methodological competence	Χ		
Social competence			X

BE_02 Fundamentals of Chemistry

1 (full time)

Study Semester: 1 (part time) Credit Points (ECTS): 5

1 (cooperative)

Workload

Conta	act time	Self-study	
Lecture	30 h	Preparation for contact time	30 h
Lab course	30 h	Literature review	20 h
		Preparation for exams	40 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Peter F. W. Simon

Lecturers

Prof. Dr. Peter F. W. Simon

Teaching contents

Lecture:

atomic structure: atoms, elements and compounds, atomic models; chemical bond: covalent, ionic, metal; definition of the chemical equilibrium; acid and base chemistry: *p*H-values, strong and weak acids and bases, neutralization, calculation of buffer solutions; redox reactions: definition of oxidation und reduction, making-up redox reactions, corrosion processes; electrochemistry: standard reduction potentials, electrolysis, electrolytic cells

Lab course:

discrimination between pure substances, mixtures, and compounds; pressure and temperature effects on the position of the chemical equilibrium (Le Châtelier's principle); acid base-titration as a tool in chemical analysis; Effect of acids and bases on buffer systems; use of anions in in chemical analysis; redox reaction in aqueous media and in melt; evaluation of corrosion effects with regard to the redox series; complex compounds

Learning objectives

On successful completion of this module, students should

- know the basic concepts and terms of general chemistry¹
- be able to sketch basic inorganic reactions²
- appreciate the importance of chemistry for every day's life⁵
- be able to execute basic laboratory procedures in accordance with general safety measures³

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory: None

Recommended:

Reading list

McMurry und Fay: General Chemistry: Atoms First

Corwin: Introductory Chemistry

Zumdahl: Chemistry: An Atom's First Approach

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course, based on attendance and laboratory reports

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	X		
Social competence			

BE_03 Bioengineering Physics I

1 (full time)

Study Semester: 1 (part time) Credit Points (ECTS): 5

3 (cooperative)

Workload

	Contact time	Self-study	
Lecture	30 h	Preparation for contact time	30 h
Exercise	15 h	Literature review	20 h
Lab course	15 h	Preparation for exams	40 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Björn Neu

Lecturers

Prof. Dr. Björn Neu

Teaching contents

Lecture/Exercises:

Physical quantities and measurements; kinematics; dynamics; motion of particles and rigid bodies; work and energy; temperature; heat and ideal gases; laws of thermodynamics

Lab course:

Kinematics; linear momentum and collisions; harmonic oscillations; resonance; moment of inertia

Learning objectives

On successful completion of this module, students should

- have achieved an understanding of the principles of mechanics and thermodynamics^{1,2}
- be equipped with analytical skills for solving problems in bioengineering^{3,4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises; lab course with lab reports

Entrance requirements

Mandatory: None

Recommended: None

Reading list

Giancoli; Physics for Scientists and Engineers Zinke-Allmang; Physics for the Life Sciences

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_04 Mathematics

1 (full time)

Study Semester: 1 (part time) Credit Points (ECTS):

1 (cooperative)

Workload

	Contact time		Self-study	
Lecture		30 h	Preparation for contact time	20 h
Seminar		15 h	Literature review	10 h
Exercise		45 h	Preparation for exams	30 h
Sum		90 h	Sum	60 h

Total workload: 150 h

Module coordinator

Prof. PD Dr.-Ing. Sylvia Moenickes

Lecturers

Dr. Peter Henselder

Teaching contents

Basics of descriptive statistics, Numbers (inequalities, complex numbers); series and sequences (Power series, Taylor series, iterative methods); real-valued functions (elementary functions, curve sketching, limiting values, l'Hopital); differential calculus, (definition of derivation, derivation rules, tangent, monotony and curvature, optimization); integral calculus (indefinite integral, calculation of area – definite Integral, main theorem of differential and integral calculus, substitution rule, integration by parts, partial fraction decomposition, improper integra)

Learning objectives

On successful completion of this module, students should

- understand¹ and provide³ quantitative and visual summaries on data sets
- know basic mathematical concepts and procedures, in particular differential calculus and its application^{1,2,3}
- be able to develop an exact way of thinking, working and wording as well as a feeling for numbers and the well-considered use of the calculator^{2,3}
- be able to find and verify independent solutions^{3,4,5}
- be able to interpret mathematical formulas^{4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory: None

Recommended:

5

Reading list

Stewart, Redlin und Watson: Algebra and Trigonometry

Stewart: Calculus - Early Transcendentals. Metric International Version

Strang: Linear Algebra and 1st Applications (see http://www.mit.edu -> OpenCourseWare)

Strang: Wissenschaftliches Rechnen (see http://www.mit.edu -> OpenCourseWare)

Kaplan: Introduction to Scientific Computation and Programming

Attaway: MATLAB - A Practical Introduction to Programming and Problem Solving

Moler: Numerical Computing with MATLAB (http://www.mathworks.de/moler/index_ncm.html)

Polya: How to solve it: A New Aspect of Mathematical Method

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Lab reports (testate)

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_05

International Project Management

1 (full time)

Study Semester: 3 (part time)

Credit Points (ECTS):

5

3 (cooperative)

Workload

Contact time		Self-study		
Lecture		15 h	Preparation for contact time	35 h
Seminar		45 h	Literature review	20 h
Exercise		15 h	Preparation for exams	20 h
Sum		75 h	Sum	75 h

Total workload: 150 h

Module coordinator

Prof. Dr. Joachim Fensterle

Lecturers

Lesley Lap; Anette Sickert Karam; Prof. Dr. Mònica Palmada Fenés

Teaching contents

Project Management: Basics of project management; objectives; course and phases of projects; target setting and project planning; creating work breakdown structures; project control: milestones, controlling

Intercultural Competence: Introduction to the topic, content and scope of the lecture; definition and models of cultures; comprehension of cultures of countries according to Hofstede; handling and comprehension of organization structures; company cultures according to Trompenaars; comprehension of cultures of regions and countries according to Trompenaars, cultures of selected countries

Communication and Presentation: Basics of communication; presentation techniques; moderation; methods of negotiation

Learning objectives

On successful completion of this module, students should

- know basic theories and methods of project- and intercultural management¹
- be able to adopt, present and communicate connections of project- and intercultural management³
- be able to discuss subjects of project management in a given cultural context based on the knowledge²
- be able to define and develop project phases 1,5
- be able to explain systematic instruments of project -planning, -development and –finalization with respect to personnel, costs, timelines and quality²
- be able to construct simple structural plans and monitor project progress based on standardized methods³
- know the basics of cultures and cultural dimensions¹

- be able to classify differences of country- and company cultures⁵
- analyse differences in country cultures⁴
- be able to prepare independently and to give professional and target group oriented presentations^{1,2,3}
- be able to organize and moderate meetings as well as to organize and perform events³
- be able to consider the social impact of professional decisions^{2,3} and thus deepen their capacity to engage in society^{2,3}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory: None

Recommended: None

Reading list

Kuster, Huber et al.: Handbuch Projektmanagement Clements und Gido: Effective Project Management

Burke: Project Management

Andersen, Grude und Haug: Goal Directed Project Management International Project Management Association (ww.ipma.ch)

Project Management Institute (ww.pmi.org): Project Management Body of Knowledge (PMBok)

GPM Deutsche Gesellschaft für Projektmanagement (ww.gpm-ipma.de)

Hofsteede and Minkow: Cultures and Organizations - Software of the Mind: Intercultural Cooperation

and Its Importance for Survival

Trompenaars and Hampden-Turner: Riding the Waves of Culture: Understanding Cultural Diversity in Business

Berko, Wolvin and Wolvin: Communicating: A social, career and cultural focus

Examination

Certificate according to §§ 14 and 20 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_06 Basics of Economic Sciences and Law

1 (full time)

Study Semester: 5 (part time) Credit Points (ECTS):

3 (cooperative)

Workload

Contact time		Self-study		
Lecture		15 h	Preparation for contact time	40 h
Seminar	•	45 h	Literature review	15 h
Exercise		15 h	Preparation for exams	20 h
Sum		75 h	Sum	75 h

Total workload: 150 h

Module coordinator

N.N.

Lecturers

Andreas Frerichs

Teaching contents

Business Administration: basics of business administration: production factors, management functions, economic principles, workflow and structure organization; cost accounting: terms of accounting: disbursement, expenditure, expense, costs and analogously receipt of payment, revenue, income, benefits; non-operating expense, expenses for costing purposes; introduction in accountancy: balance of accounts, income statement, simple accounting record; bill of charges: variable (proportional, progressive, degressive, regressive) and fixed costs (step costs), costs of goods manufactured, acquisition price; cost categories, cost units and cost object accounting; accounting for actual costs, normal costing, planned cost accounting (basic cases of output costing, equivalent unit calculation, overhead calculation, calculation of joint products, high-low points method); contribution accounting; basics of marketing

Basics of Law: Safety and liability law: legal basis of occupational safety; technical rules, accident prevention regulation, German civil code: outline of German civil code; structure; general principles of civil law contracts; Patents and patent law: prerequisites of patents; definition of invention; patents with respect to bioengineering; patent procedure; patent infringement; European and international patent law; Genetic engineering act (GenTG): purpose and application range; terms and definitions; liability and criminal offence

Learning objectives

On successful completion of this module, students should

- know the general management functions¹⁻⁴
- know the basics of workflow and structure organization¹⁻³
- be able to interpret basic balances¹⁻³
- know the die basal methods of cost accounting¹⁻⁴
- be able to solve costs into determinants 1-4
- know basic market mechanisms¹⁻³

5

- know the differences between rather market-based and monopolistic action¹⁻²
- be able to integrate marketing in the context of managerial processes¹
- understand marketing as managing tool and differ marketing from classical advertising²
- know the basics of liability according to civil law which result from neglecting legal provisions¹
- have insight in structure and principles of the civil code¹
- be able to read and to interpret legislative texts and contracts^{2,4}
- understand the importance of patents and inventions as property rights and for innovations and innovation management^{1,2}
- know the basics of the genetic engineering law and provisions when working with genetic modified organisms (GMO)^{1,2,3}
- be able to consider the social and legal impact of professional decisions^{2,3} and thus deepen their capacity to engage in society^{2,3}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory: None

Recommended:

Reading list

Horváth: Controlling

Dias and Shah: Introduction to Business

Nickels, McHugh and McHugh: Understanding Business

Madura: Introduction to Business

McLaney and Atrill: Accounting: An Introduction
Pride, Hughes and Kapoor: Introduction to Business

O' Sullivan, Sheffrin and Perez: Microeconomics - Principles, Applications, and Tools

Kotler, Armstrong, Wong and Saunders: Principles of Marketing

Fosters: German Legal System and Laws

Wendler: Key Aspects of German Business Law: A Practical Manual

Burg: A Manual for Intellectual Property Management Patent Law (Manuals in Biomedical Research)

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Beamer; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

last amended: October 2020

BE 07

Genetics and Molecular Biology

2 (full time)

Study Semester: 2 (part time)

Credit Points (ECTS):

5

2 (cooperative)

Workload

Contact time		Self-study		
Lecture		30 h	Preparation for contact time	30 h
Lab course		30 h	Literature review	20 h
			Preparation for exams	40 h
Sum		60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Mònica Palmada Fenés

Lecturers

Prof. Dr. Mònica Palmada Fenés

Teaching contents

Lecture:

basics of general genetics and molecular biology: history, structure of DNA, recombination, genetic code, replication, transcription, mRNA processing, translation; gene regulation in prokaryotes and eukaryotes: promoters, transcription factors; molecular biology tools: DNA sequencing, DNA libraries, functional genomics, chip technologies, hybridization and screening techniques; optimization of gene expression in prokaryotes and eukaryotes; bioinformatics: databases (NCBI, EBI), sequence analysis (alignment, homologous comparison, gene prediction, phylogenetics); genetic engineering: plasmids, recombinant DNA, PCR, cloning, transformation, transduction, transfection, conjugation

Lab course:

introducing specific mutations into DNA by site-directed mutagenesis; isolation of plasmidic DNA and sequencing; RNA interference; RNA isolation; cDNA synthesis; quantitative real-time PCR; gene subcloning

Learning objectives

On successful completion of this module, students should

- know the genetic processes within a cell (replication, transcription, translation) and the principles of gene regulation^{1,2}
- have gained basic knowledge on genetic engineering, especially with respect to DNA recombination tools and DNA analysis^{1,2}
- be able to perform and to assess molecular biological and genetical experiments 3,4,5
- be aware of strategies to optimize gene expression in different host organisms²
- understand the impact of functional genomics on genetic engineering^{2,5}
- understand and be able to use public domain databases for bioinformatical issues 3,4
- be able to consider the social and ethical impact of professional decisions^{2,3} and thus deepen their capacity to engage in society^{2,3}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory: Cell Biology and Microbiology (BE_01)

Recommended: Fundamentals of Chemistry (BE_02)

Reading list

Watson, Baker, Bell and Gann: Molecular Biology of the Gene

Clark: Molecular Biology

Klug, Cummings and Spencer: Essentials of Genetics

Sambrook: The Condensed Protocols from Molecular Cloning: A Laboratory Manual

Pevsner: Bioinformatics and Functional Genomics

Yadav: Bioinformatics: A Practical Guide for Molecular Biologist: A Text Book for Beginners

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_08 Applied Chemistry

2 (full time)

Study Semester: 4 (part time) Credit Points (ECTS): 5

4 (cooperative)

Workload

C	ontact time	Self-study	
Lecture	30 h	Preparation for contact time	20 h
Seminar	15 h	Literature review	10 h
Exercise	30 h	Preparation for exams	30 h
Lab course	15 h	·	
Sum	90 h	Sum	60 h

Total workload: 150 h

Module coordinator

Prof. Dr. Peter F. W. Simon

Lecturers

Prof. Dr. Peter F. W. Simon; Prof. Dr. Amir Fahmi

Teaching contents

Lecture, seminar and exercise:

hydrogen, oxygen and water; chemistry of main group and of transition elements; metals: occurrence, production; metal complexes; radioactivity; functional groups: hydrocarbons with single-, double-, and triple-bonds; aromatic compounds; organohalides; alcohols, phenols and thiols; ethers and epoxides; aldehydes and ketones; carboxylic acids and their derivatives; reactions and mechanisms: radical, nucleophilic and electrophilic substitution; eliminations; additions to C-C-multiple bonds; oxidation and reduction; reactions of carbonyl compounds

Lab course:

purification of educts and products by distillation, filtration, recrystallization; basic substance identification by melting point, boiling point, refractive index; basic synthesis procedures: nucleophilic and electrophilic substitution reactions, elimination reactions, addition reactions

Learning objectives

On successful completion of this module, students should

Organic Chemistry:

- know the basic concepts and terms of organic chemistry¹
- be able to sketch basic organic reaction mechanisms³
- be able to appreciate the influence of organic compounds in every day's life⁵
- be able to plan and conduct organic syntheses in laboratory scale¹

Inorganic Chemistry:

- know the basic chemistry of the elements and their compounds¹
- be able to appreciate general trends within the various groups in the periodic table²

- be able to point out applications of inorganic compounds and materials especially in the biomedical area⁴
- be able to assess the risk of inorganic compounds⁵
- be able to explain the role of inorganic compounds in biochemical processes²

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory: Fundamentals of Chemistry (BE_02)

Recommended: None

Reading list

McMurry: Organic Chemistry

Hadad, Craine, Hart and Hart: Organic Chemistry McMurry and Fay: General Chemistry: Atoms First Lawrance: Introduction to Coordination Chemistry

Mathey and Sevin: Molecular Chemistry of the Transition Elements: An Introductory Course

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course, based on attendance and laboratory reports

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_09 Biochemistry

2 (full time)

Study Semester: 2 (part time) Credit Points (ECTS): 5

2 (cooperative)

Workload

Contact time		Self-study		
Lecture		30 h	Preparation for contact time	30 h
Lab course		30 h	Literature review	20 h
			Preparation for exams	40 h
Sum		60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. habil. Christoph Böhmer

Lecturers

Prof. Dr. habil. Christoph Böhmer

Teaching contents

Lecture:

nucleic acids; introduction to proteins: the primary level of protein structure; the three-dimensional structure of proteins; protein function and evolution; carbohydrates: sugars, saccharides, glycans; lipids, membranes, and cellular transportation; enzymes: biological catalysts; basics of bioinformatics

Lab course:

qualitative and quantitative analysis of biomolecules: nucleic acids, protein and carbohydrates; chromatographic methods; electrophoresis; analysis of Enzyme kinetics; recombinant DNA methods; sequence retrieval and analysis; application of molecular biology software

Learning objectives

On successful completion of this module, students should

- know the basic concepts of biochemistry, be familiar with the technical terms and be able to apply both to given problems¹⁻³
- be able to conduct experimental work and to document and to interpret the results¹⁻⁵
- comprehend the correlations of structure and function^{1,2,5}
- be able to handle simple bioanalytical lab operations¹⁻⁵

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; lab course with lab protocols

Entrance requirements

Mandatory: Fundamentals of Chemistry (BE_02)

Recommended: Cell Biology and Microbiology (BE_01)

Reading list

Berg, Tymoczko and Stryer: Biochemistry

Voet and Voet: Biochemistry

Cox and Nelson: Lehninger Principles of Biochemistry Roberts, Raff and Lewis: Molecular Biology of the Cell

Matthews: Biochemistry

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course

Teaching materials and media

Projector; white/black board; hand-outs; overhead projector; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_10 Bioengineering Physics II

2 (full time)

Study Semester: 2 (part time) Credit Points (ECTS): 5

4 (cooperative)

Workload

Contact time		Self-study	
Lecture	30 h	Preparation for contact time	30 h
Exercise	15 h	Literature review	20 h
Lab course	15 h	Preparation for exams	40 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Björn Neu

Lecturers

Prof. Dr. Björn Neu

Teaching contents

Lecture/Exercises:

Electricity and magnetism; waves; special theory of relativity; quantum theory; quantum mechanics of atoms; principles of nuclear and medical physics;

Lab course:

geometric optics; charge over mass ratio; wave optics; thermal radiation; sound waves

Learning objectives

On successful completion of this module, students should

- have achieved an understanding of the principles of electricity and magnetism and modern physics^{1,2}
- be equipped with analytical skills for solving problems in bioengineering^{3,4,5}

Teaching and learning methods

Lecture; self-study; group work; exercises; lab course with lab report

Entrance requirements

Mandatory: Bioengineering Physics I (BE_03)

Recommended: None

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Reading list

Giancoli; Physics for Scientists and Engineers Zinke-Allmang; Physics for the Life Sciences

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes, certificate for lab course

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_11 Applied Microbiology

2 (full time)

Study Semester: 4 (part time) Credit Points (ECTS): 5

4 (cooperative)

Workload

Contact time		Self-study		
Lecture		30 h	Preparation for contact time	45 h
Lab course		30 h	Literature review	20 h
			Preparation for exams	25 h
Sum		60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Joachim Fensterle

Lecturers

Prof. Dr. Joachim Fensterle

Teaching contents

Lecture:

microbial metabolism: autotrophy, heterotrophy, fermentation pathways, energy metabolism; microbial growth: basic growth requirements, media, growth kinetics in static cultures; bacteria and environment: analyzing microbial communities, biofilms, environmental habitats, symbiosis, animal and plants as habitats; nutrient cycles and biodegradation; infection biology and vaccines: molecular biology of infection, host immunity, vaccines, selected pathogens; introduction to environmental biotechnology and pharmaceutical biotechnology

Lab course:

microbial methods: culture techniques, determining cell numbers and cell masses (total cell counts, CFU, OD600, dry cell mass); growth kinetics of a bacterial culture; isolation of bacteria: isolation of luminescent bacteria from sea fish; product formation: comparison of different fermentation types of yeast and production of ethanol and glycerol; metabolism: homo- and heterofermentative lactic acid bacteria; analytics: analytics of metabolites

Learning objectives

On successful completion of this module, students should

- know the importance of microorganisms in biotechnology¹
- have expanded their knowledge of distribution, characteristics and biotechnological and medical relevance of microorganisms^{1,2}
- be able to recognize microorganisms as capable and efficient production systems for valuable chemical compounds and pharmaceuticals^{1,2}
- understand and apply basic biotechnological processes, in particular with respect to the metabolism of the selected microorganism^{2,3,4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; lab course with lab protocols

Entrance requirements

Mandatory: Cell Biology and Microbiology (BE_01)

Recommended:

Reading list

Madigan, Martinko, Stahl and Clark: Brock Biology of Microorganisms Glazer: Microbial Biotechnology: Fundamentals of Applied Microbiology

Antranikian: Angewandte Mikrobiologie

Thieman and Palladino: Introduction to Biotechnology

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course

graded lab protocols

Teaching materials and media

Projector; white/black board; hand-outs; overhead projector; flipchart; visualisation aids for presentation; demonstration material; flipped-classroom elements with self assessments

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_12 Applied Mathematics

2 (full time)

Study Semester: 2 (part time) Credit Points (ECTS): 5

2 (cooperative)

Workload

Contact time		Self-study		
Lecture		30 h	Preparation for contact time	30 h
Exercise		30 h	Literature review	20 h
			Preparation for exams	40 h
Sum		60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. PD Dr.-Ing. Sylvia Moenickes

Lecturers

Prof. PD Dr.-Ing. Sylvia Moenickes

Teaching contents

Linear algebra (Linear systems of equations; Vector analysis, esp. linear combinations, scalar and vector product matrices, determinants, inverse, eigenvalues); analytic geometry (straight lines and planes in space, polar coordinates); multivariate functions (differentiation, partial derivatives, gradient, total differential, integration); ordinary differential equations, esp. slope field, Euler method, separation of variables, first and second order linear differential equations

Learning objectives

On successful completion of this module, students should

- know advanced mathematical concepts and methods, in particular work with multivariate functions and modeling with differential equations^{1,2}
- be able to recognize the additional benefit of mathematics: mathematical formulation and processing of a problem deliver additional insights, which might have been missed²
- have improved their social competence by group homework and trained their communication skills with the help of exact mathematical formulation^{2,3}
- have improved problem-solving thinking via doing their homework^{3,4}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory.

Recommended: Mathematics (BE 04)

Reading list

Stewart: Calculus - Early Transcendentals. Metric International Version

Strang: Linear Algebra and 1st Application (video lecture, see: http://www.mit.edu -> OpenCourseWare

[or via iTunes U])

Mattuck: Differential Equations. Video recording of a lecture at MIT, http://www.mit.edu →

OpenCourseWare [or via iTunes U]

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	X		
Methodological competence	X		
Social competence			X

BE_13 Physical Chemistry

3 (full time)

Study Semester: 3 (part time) Credit Points (ECTS): 5

5 (cooperative)

Workload

	Contact time	Self-study		
Lecture	30 h	Preparation for contact time	30 h	
Exercise	15 h	Literature review	20 h	
Lab course	15 h	Preparation for exams	40 h	
Sum	60 h	Sum	90 h	

Total workload: 150 h

Module coordinator

Prof. Dr. Björn Neu

Lecturers

Prof. Dr. Björn Neu

Teaching contents

Lecture/Exercises:

Laws of Thermodynamics; phase equilibria; chemical equilibrium; kinetics; rates of reactions; biomolecular structure; macromolecules and self-assembly

Lab course:

ideal gas law; kinetics; boiling point elevation; boiling diagram, enthalpy

Learning objectives

On successful completion of this module, students should

- understand the basic theories and methods of physical chemistry^{1,2}
- be able to analyze and interpret processes and data with the aid of physicochemical models^{3,4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises; lab course with lab reports

Entrance requirements

Mandatory: Bioengineering Physics I (BE_03); Bioengineering Physics II (BE_10)

Recommended:

Reading list

Tinoco, Sauer, Wang and Puglisi: Physical Chemistry. Principles and Applications in Biological Sciences

Atkins and de Paula: Physical Chemistry for the Life Sciences

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course

Teaching materials and media

Projector; white/black board; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

Instrumental Analytics BE 14

3 (full time)

Study Semester: **5** (part time)

Credit Points (ECTS): 5 (cooperative)

Workload

Co	ontact time	Self-study	
Lecture	30 h	Preparation for contact time	30 h
Exercise	30 h	Literature review	20 h
		Preparation for exams	40 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Mònica Palmada Fenés

Lecturers

Prof. Dr. Mònica Palmada Fenés

Teaching contents

Lecture:

Principles and applications of most important methods: basics of spectroscopy; UV/VIS-spectroscopy/ spectrophotometry; vibrational spectroscopy; infrared and Raman spectroscopy; molecular fluorescence spectroscopy; chromatography: HPLC, DC, GC; mass spectrometry; nuclear magnetic resonance spectroscopy (NMR); electroanalytical methods: amperometry, polarography, voltammetry, potentiometry, coulometry

Exercises:

Determination of analytes' concentration by UV/Vis-spectrophotometry using calibration curves, determination of equilibrium constant and equivalence point by spectrophotometry, analysis of UV/Vis. IR, Raman and NMR spectra, interpreting mass spectrometric data, demonstration of chromatographic techniques

Learning objectives

On successful completion of this module, students should

- know the theoretical basis of various spectroscopic, chromatographic and further instrumental analysis methods1
- be able to select appropriate methods in order to solve a given analytical task^{2,3}
- be able to understand and to estimate the opportunities of new analytical methods²
- be able to analyze and to judge measurement results^{4,5}
- be able to analyze UV/Vis, IR, Raman and NMR spectra 4,5
- be able to interpret mass spectrometry data^{2,4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

5

Teaching and learning methods

Lecture; self-study; exercises

Entrance requirements

Mandatory: Basics of Physics (BE_03)

Recommended: Fundamentals of Chemistry (BE_02); Applied Chemistry (BE_08)

Reading list

Harris: Quantitative Chemical Analysis

Skoog, Holler, Crouch: Principles of Instrumental Analysis

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	X		
Social competence			X

last amended: October 2020

BE_15 Measurement and Control Engineering

3 (full time)

Study Semester: 3 (part time) Credit Points (ECTS): 5

5 (cooperative)

Workload

Contact time		Self-study		
Lecture		30 h	Preparation for contact time	30 h
Exercise		15 h	Literature review	30 h
			Preparation for exams	45 h
Sum		45 h	Sum	105 h

Total workload: 150 h

Module coordinator

Prof. Dr.-Ing. Frank Platte

Lecturers

Prof. Dr.-Ing. Frank Platte

Teaching contents

tasks, goals and application of measurement and control engineering; mathematical modeling of technical systems using differential equations; Introduction to physical computing, description of a system with a block diagram; operating mode framework of control cycles; properties of control cycles: linear and non-linear systems; linearization, systems with concentrated/distributed parameters; timevariant and time-invariant systems; causal and non-causal systems; description of linear continuous systems in the time domain: unit-step response, unit-impulse response, convolution integral (Duhamel's integral); description of linear continuous systems in the frequency domain: Laplace transform, transfer function, frequency response plot, Nyquist plot, Bode diagram; dynamic and steady state behavior of linear continuous control systems; stability of linear continuous control systems: definition of stability and stability condition, Routh-Hurwitz criterion, Nyquist criterion, root locus curve; design process for linear continuous control systems, Ziegler-Nichols method

Learning objectives

On successful completion of this module, students should

- know how to describe mathematically and to control technical systems as well as to depict them in block diagrams^{1,2}
- be able to analyse and to judge mathematically described time-continuous single-parameter control systems to allow the design a control unit according to given specifications with respect to stationary and dynamic behaviour^{3,4,5}
- be able to derive demands to the measurement engineering^{4,5}
- have gained experience with computer-based development tools, in particular Matlab/Simulink, to be able to conduct practice-oriented descriptions, calculations, and analyses^{3,4}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory: Mathematics (BE_04)

Recommended: Basics of Physics (BE_03), Applied Mathematics (BE_12)

Reading list

Nise: Control Systems Engineering

Atherton: Control Engineering – An introduction with the use of Matlab (free download:

https://kosalmath.files.wordpress.com/2010/08/control-engineering-matlab.pdf)

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	X		
Methodological competence	X		
Social competence			X

BE_16 Process Engineering

3 (full time)

Study Semester: 3 (part time) Credit Points (ECTS): 5

5 (cooperative)

Workload

Contact time		Self-study	
Lecture	30 h	Preparation for contact time	15 h
Exercise	30 h	Literature review	10 h
Lab course	30 h	Preparation for exams	35 h
Sum	90 h	Sum	60 h

Total workload: 150 h

Module coordinator

Prof. Dr.-Ing. Frank Platte

Lecturers

Prof. Dr.-Ing. Frank Platte

Teaching contents

Lecture:

Chemical reactors: continuous and discontinuous operation of ideal reactors (Batch reactor (BR), plug flow reactor (PFR), continuously stirred tank reactor (CSTR)), reactor and reaction type, mass balance, evaluation criteria for operating performance of chemical reactors (capacity, conversion rate, selectivity, yield rate, space-time-yield); Reaction kinetics of homogeneous reactions: reaction equation, chemical reaction rate, extent-of-reaction, approach for reaction-kinetic equation (irreversible, equilibrium reaction), temperature dependence of rate constants, determination of reaction rate; Ideal reactors with and without heat of reaction: stoichiometric addition of components, addition of component in excess, comparison of sizes of ideal reactors; Connection of ideal reactors: cascade of stirred reactors and plug flow reactors (analytical, graphical solution), upstream reactor and separation unit; Non-ideal reactors; Influence of heat of reaction: reaction enthalpy (heat of reaction), energy balance, Adiabatic operation, Heat effects, continuous operation (stationary working point, stability of continuously operated stirred reactor, hysteresis (multiple steady states); Optimal temperature control of reversible, exothermal reactions: ideal stirred reactor, continuous operation, Residence time distribution of real reactors.

Fluid properties, Newtonian and non-Newtonian fluids, fluid statics; fluid flow: flow phenomena, two-phase flow systems

Lab course:

saponification in a BR, CSTR and PFR; measurements of residence time distribution (RTD) and dispersion effects; Bernoulli experiment; Osbourne-Reynolds experiment; analysis and synthesis of control loops using Matlab/Simulink; temperature control in a wind tunnel using Microcontroller (e.g. ARDUINO) and Simulink; water level control; foam and concentration control in fermenters

Learning objectives

On successful completion of this module, students should

- know the different types of chemical reactors and be able to select the appropriate reactor type for a given reaction^{1,2,3}
- know the basics of the kinetics and thermodynamics of the reactions proceeding to the desired product^{1,2}
- be able to apply the different connection types of ideal reactors^{2,3}
- be able to calculate the non-ideal flow through reactors and the residence time in the reactor³
- know relevant parameters and are able to apply them in reactor design^{3,5}
- be able to consider the influence of the reaction enthalpy in their calculation^{3,4}
- know how to devise the temperature control in a reactor^{4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises; lab course with lab reports

Entrance requirements

Mandatory: Mathematics (BE_04)

Recommended: Fundamentals of Chemistry (BE_02); Basics of Physics (BE_03), Applied Mathematics (BE_12)

Reading list

Fogler and Scott: Elements of Chemical Reaction Engineering Levenspiel and Octave: Chemical Reaction Engineering Potter, Wiggert and Ramadan: Mechanics of Fluids

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_17 Current Topics in Biology

3 (full time)

Study Semester: 7 (part time) Credit Points (ECTS): 5

5 (cooperative)

Workload

Co	ntact time	Self-study	
Seminar	30 h	Preparation for contact time	35 h
Project	30 h	Literature review	35 h
		Preparation for exams	20 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Joachim Fensterle

Lecturers

Prof. Dr. Joachim Fensterle

Teaching contents

The current state of the art in research will be presented by researchers of different fields of bioengineering. Companies and institutions involved in state of the art biotechnological research will be visited. Students will analyse and interpret original research works in each field.

Students will form project groups, where they work out a new research concept including budgeting and funding possibilities in a selected field. Students will present the concept in oral and written form.

Learning objectives

On successful completion of this module, students should

- know different possibilities of funding and the structure of grant applications¹
- be able to follow and discuss presentations of current state of the art ^{2,3,4,5}
- be able to organise and manage a project and group work according to project management principles²
- be able to develop a mode to evaluate and document scientific results³
- be able to summarize and explain the results and findings in a scientific report and a presentation⁴
- be able to critically discuss their findings⁵
- be able to consider the social, environmental and ethical impact of professional decisions^{2,3} and thus deepen their capacity to engage in society^{2,3}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Seminar; self-study; group work; project

Entrance requirements

Mandatory: None

Recommended:

Reading list

Original papers and reviews

Examination

Certificate according to §§ 14 and 20 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence		Χ	
Methodological competence		Χ	
Social competence	X		

last amended: October 2020

BE_18 Data Analysis and Applied Statistics

3 (full time)

Study Semester: 5 (part time) Credit Points (ECTS): 5

5 (cooperative)

Workload

	Contact time	Self-study	
Seminar	30 h	Preparation for contact time	20 h
Project	30 h	Literature review	10 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. PD Dr.-Ing. Sylvia Moenickes

Lecturers

Prof. PD Dr.-Ing. Sylvia Moenickes

Teaching contents

Data Analysis: statistics in the analysis of biological data; computer-assisted (CA) analysis of large data sets, CA of spectral data, AI for data analysis

Applied Statistics: Probability theory, random variables, probability distributions; Inferential statistics; correlation, hypothesis testing; univariate, multivariate regression analysis; analysis of variance, post hoc test; parameter estimation, Bayesian inference, time series

Learning objectives

On successful completion of this module, students should

- understand¹ and provide³ quantitative and visual summaries on data sets
- be able to identify² underlying probability distributions
- be able to judge determinations, correlations and information through regression analyses^{2,3}
- be able to estimate parameters³ and test hypotheses³
- be able to analyse time series³
- be able to apply statistical methods on the analysis of biological data
- be able to apply computer-assisted analysis of large data sets and spectral data

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises; project work

Entrance requirements

Mandatory.

Recommended: Mathematics (BE_04)

Reading list

Stewart: Calculus - Early Transcendentals. Metric International Version

Strang: Linear Algebra and 1st Applications (see http://www.mit.edu -> OpenCourseWare)

Stewart: Calculus, Metrics

Strang: Linear Algebra and 1st Applications (see http://www.mit.edu -> OpenCourseWare)

Bulmer: Principles of Statistics

Field: Discovering Statistics using R, Sage

Delore: Statistics for Scientists and Engineers, Pearson

Veaux: Stats: Data and Models

Attaway: MATLAB - A Practical Introduction to Programming and Problem Solving

Moler: Numerical Computing with MATLAB (http://www.mathworks.de/moler/index_ncm.html)

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Graded project report;

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

last amended: October 2020

BE_19 Bioprocess Engineering

4 (full time)

Study Semester: 4 (part time) Credit Points (ECTS): 5

6 (cooperative)

Workload

Contact time		Self-study		
Lecture		30 h	Preparation for contact time	45 h
Lab course		30 h	Literature review	20 h
			Preparation for exams	25 h
Sum		60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Joachim Fensterle

Lecturers

Prof. Dr. Joachim Fensterle

Teaching contents

Lecture:

introduction, historical background, structure of bioprocesses; balancing bioprocesses: material and energy balances, unsteady state balances; mass transfer: mass transfer in bioprocesses, oxygen transfer; kinetics: basic reaction theory, yields, growth, production kinetics and kinetics of substrate uptake, determining parameters from experimental data; reactor engineering: reactor configurations, operation modes: stirred tank reactors: batch, fed batch, continuous; other reactor designs; reactor sterilization and operation; process control and instrumentation

Lab course:

simulation: determining oxygen transfer rates; simulation: determining optimal operation conditions for a fed batch process; assessing and calculating kinetic parameters (substrate consumption, product formation, cell growth) in an anaerobic fermentation process using real-time measurement of gas and ethanol formation; aerobic continuous culture (chemostat) of yeast at different dilution rates; determining oxygen transfer rates in a lab-scale bioreactor.

Learning objectives

On successful completion of this module, students should

- know the design and range of application of bioreactors and understand different bioprocess control variants^{1,2}
- understand the basics of material and heat transfer in bioreactors 1,2
- be able to balance the material and energy transfer in a bioprocess³
- know the scale-up parameters and to be able to apply them in a scale-up process^{1,3}
- be able to describe mathematically the growth of microbial cultures and gain basic knowledge with respect to modeling of microbial growth and product formation^{2,3}
- be able to apply analysis methods like measurement of optical density (OD), bio dry mass, substrate and (by-) product analyses^{1,2}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; group work; self-study; lab course with lab protocols

Entrance requirements

Mandatory: Applied Microbiology (BE_11), Process Engineering (BE_16)

Recommended: Applied Mathematics (BE_12)

Reading list

Doran: Bioprocess Engineering Principles

Shuler and Kargi: Bioprocess Engineering: Basis Concepts

Chmiel: Bioprozesstechnik

Haas: Praxis der Bioprozesstechnik mit virtuellem Praktikum

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	X		
Methodological competence	X		
Social competence			X

BE_20 Enzyme Engineering

4 (full time)

Study Semester: 4 (part time) Credit Points (ECTS): 5

6 (cooperative)

Workload

Contact time		Self-study	
Lecture	30 h	Preparation for contact time	45 h
Seminar	15 h	Literature review	20 h
Exercise	15 h	Preparation for exams	25 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Mònica Palmada Fenés

Lecturers

Prof. Dr. Mònica Palmada Fenés

Teaching contents

Lecture:

Enzymes: classification, mechanisms, kinetics; technical relevant enzymes: hydrolases, isomerases, oxidoreductases, transferases; enzyme production: production systems, export (prokaryotes), inclusion bodies; protein folding and maturation; protein immobilization; immobilized protein imprinting; rational design of enzymes; directed evolution methods: error prone PCR (epPCR), DNA shuffling, Sequence Saturation Mutagenesis (SeSaM); high-throughput screening (HTS); phage-display

Exercises/Seminar:

Determination of enzyme kinetic parameters; analysis and strategies for identification of enzyme inhibitor types; students' seminar on technical application of enzymes; reading, presentation and discussion of research papers on enzyme improvement

Learning objectives

On successful completion of this module, students should

- deepen their knowledge on enzymes 1,2
- know the methods to obtain kinetic parameters of enzymes^{1,2,3}
- be able to interpret and analyze enzyme-kinetic data^{4,5}
- have gained insights in technical application of enzymes and the reasons for enzyme improvement^{1,3}
- understand the principles of the various rational design and directed evolution methods to obtain protein libraries^{1,2}
- be able to select the appropriate methods for a given protein engineering task 4.5
- be capable to critically interpret experimental data from primary literature^{2,3,4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory: Biochemistry (BE_09)

Recommended: Genetics and Molecular Biology (BE_07); Instrumental Analytics (BE_14)

Reading list

Park and Cochran: Protein Engineering and Design

Sheehan: Protein Engineering: Design, Selection and Applications

Koehrer and RajBhandary (eds.): Protein Engineering

Arndt and Müller: Protein engineering protocols

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	X		
Social competence			X

BE_21 Project

4 (full time)

Study Semester: 6 (part time) Credit Points (ECTS): 5

6 (cooperative)

Workload

Conta	act time	Self-study	
project	10 h	Preparation for contact time	90 h
Discussions	10 h	Literature review	10 h
group work	20 h	Preparation for exams	10 h
Sum	40 h	Sum	110 h

Total workload: 150 h

Module coordinator

Prof. Dr. Björn Neu

Lecturers

Dr. Natalia Balcázar Navarro; Philip Leenen, B.A. (coordination); all lecturers of the faculty

Teaching contents

Organization of projects as part of a knowledge-based education; structuring of tasks; collection and analysis of relevant academic literature; acquisition of social competence and ability to work in a team; acquisition and deepening of subject-specific knowledge and methods; writing of academic texts; adequate presentation of results by way of posters, reports or presentation

Learning objectives

On successful completion of this module, students should

- know and apply methods of academic writing to a project relevant to the study course³
- have acquired and broadened their discipline-specific knowledge^{1,3,4}
- be able to define the relevant project phases on the basis of the project's subject and to define an appropriate project organisation¹
- be able to collect the relevant data and to discuss the information in their group²
- be able to detect multidisciplinary contexts and to apply if necessary knowledge and methods in an interdisciplinary, but always problem- and/or goal-oriented way
- be able to work independently as well as in a team and have experienced requirements and options of leadership without disciplinary authority²
- be able to analyze the scientific/academic and societal relevance of the results for the achievement of the project's goal⁴
- be able to summarize the results of the project in a written report and prepare the presentation to the study course group⁴

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

group work; project; discussion; contact time; presentation

Entrance requirements

Mandatory: International Project Management (BE_05)

Recommended: modules of terms 1-3 depending on selected topic

Reading list

Wilson: An introduction to Scientific Research Carey: A Beginner's Guide to Scientific Method

Valiela: Doing Science: Design, Analysis, and Communication of Scientific Research

Kahn: The Student's Guide to Successful Project Teams

APittampalli: Read This before Our Next Meeting

Horine: Project Management Absolute Beginner's Guide

Portny: Project Management for Dummies

Alley: The Craft of Scientific Presentations: Critical Steps to Succeed and Critical Errors to Avoid

Hofmann: Scientific Writing and Communication: Papers, Proposals, and Presentations

Alley: The Craft of Scientific Writing

Depending on topic scientific literature will be provided by instructor.

Examination

Certificate according to §§ 14 and 20 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; flipchart; visualization tools (facilitator's toolcase); AV-media; overhead projector; demonstration material; library

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence		Χ	
Methodological competence	Χ		
Social competence	Χ		

last amended: March 2021

BE_22 Bioinformatics

4 (full time)

Study Semester: 6 (part time) Credit Points (ECTS): 5

6 (cooperative)

Workload

Contact time		Self-study	
Lecture	30 h	Preparation for contact time	20 h
Seminar/Project	30 h	Literature review	10 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr.-Ing. Frank Platte

Lecturers

Dr. January Weiner

Teaching contents

Basics of programming (data types; decision making; operators, loops, functions, databases management); Database search algorithms such as regular expressions; Algorithms for sequence analysis and genomics: Introduction to web-based algorithms (speed, reliability); image analysis (segmentation, size estimators, classification); analysis of spectral data (feature extraction, database search)

Project: In the project, students will apply their knowledge to solve a bioinformatics question using Matlab or an Al system.

Learning objectives

On successful completion of this module, students should

- understand¹ and provide³ quantitative and visual summaries on data sets
- have learnt basics of programming^{2,3}
- be able to search algorithms e.g. finding scientific papers^{2,3}
- be able to analyse images and spectral data³

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory: Mathematics (BE_04)

Recommended: Data Analysis and Applied Statistics (BE_18)

Reading list

Stewart, Redlin und Watson: Algebra and Trigonometry

Stewart: Calculus - Early Transcendentals. Metric International Version

Strang: Linear Algebra and 1st Applications (see http://www.mit.edu -> OpenCourseWare)

Strang: Scientific computing (see http://www.mit.edu -> OpenCourseWare)

Kaplan: Introduction to Scientific Computation and Programming

Attaway: MATLAB – A Practical Introduction to Programming and Problem Solving Matlab primer: https://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf

Polya: How to solve it: A New Aspect of Mathematical Method

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

last amended: March 2021

BE_23.1 Technical Enzymology and Biocatalysis

4 (full time)
Study Semester: 6 (part time)

6 (cooperative)

Credit Points (ECTS): 5

Workload

Contact time		Self-study	
Seminar	60 h	Preparation for contact time	30 h
		Literature review	30 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Mònica Palmada Fenés

Lecturers

Prof. Dr. Mònica Palmada Fenés

Teaching contents

Technical Enzymology: Application of enzymes in industry: food and beverage enzymes; feed enzymes; paper and pulp industry; starch industry; household care enzymes/detergent industry; textile industry; bioenergy enzymes; leather industry; enzymes for processing of fats and oils

Biocatalysis: Characteristics of biocatalysis; applications in industry; green chemistry; enantiomerically pure compounds; activity, selectivity and stability of enzymes; basic and fine chemicals including pharma intermediates and semi-synthetic antibiotics; biocatalysis in non-aqueous media (organic solvents, ionic liquids); stability of proteins

Learning objectives

On successful completion of this module, students should

- have basic knowledge on the industrial application of enzymes^{1,2}
- know the different types of enzymes employed in the dairy industry and judge their usability 1,2
- research a leading-edge application of enzyme technology and present and discuss the results in an oral presentation^{4,5}
- know how enzymes are used in industry for production of chemical products 1,2
- be able to explain enzyme-catalyzed processes for production of enantomerically pure compounds and suggest strategies for stereoselective synthesis optimization^{2,3,4,5}
- know the pros and cons of different reaction media for enzymatic reactions and decide which media is appropriate for a specific application^{4,5}
- be able to apply knowledge from molecular biology, biochemistry and applied chemistry courses to design biologically-based methods for the synthesis of a chemical compound of interest, and present and discuss them in an oral presentation^{3,4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work and oral presentation

Entrance requirements

Mandatory: None

Recommended: Applied Chemistry (BE_08); Biochemistry (BE_09); Enzyme Engineering (BE_20)

Reading list

Aehle: Enzymes in Industry: Production and Applications

Polaina and MacCabe: Industrial enzymes: structure, function and applications

Bommarius and Riebel: Biocatalysis: Fundamentals and Applications

Faber: Biotransformations in Organic Chemistry

Further literature will be provided by the lecturer

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; pin-board; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	X		
Methodological competence	X		
Social competence			X

BE_23.2 Agricultural Biotechnology and Biofuels

4 (full time)
Study Semester: 6 (part time)

6 (cooperative)

Credit Points (ECTS): 5

Workload

Contact time		Self-study	
Seminar/Project	60 h	Preparation for contact time	30 h
		Literature review	30 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Joachim Fensterle

Lecturers

Dr. Martin Gruhlke; Prof. Dr. Matthias Kleinke

Teaching contents

Agricultural Biotechnology: Breeding, selective breeding, plant transgenics, cloning, antisense and gene silencing selected applications for pharmacology, plant technology or enhanced nutrition, regulatory issues, perception and concerns in Europe and US

Biofuels: Renewable energy sources compared to fossil resources, Biomass feedstock and intermediates of Biofuels, properties and utilisation, production processes: conventional and lignocellulosic ethanol and methanol production, hydrogen from biomass, transesterification, Biomass-to-Liquid (BTL) conversion, methanol, DME, DMC synthesis, solid biomass, combustion, carbonisation and gasification of biomass, anaerobic fermentation, production costs, GHG emissions, Sustainability of biofuel production and utilisation

Learning objectives

On successful completion of this module, students should

Agricultural Biotechnology

- know the principles of transgenic plant technology¹
- be able to name and describe selected examples 1
- know relevant regulations¹
- be able to defend pro- or con- positions based on rational arguments^{2,4,5}

Biofuels

- be prepared to identify energy potentials of biofuels¹
- know the properties of the most common biofuels and their demands¹
- have an overview about biomass resources, the biofuel production processes as well as their energetic, economic and ecological aspects^{1,2}
- be able to judge on the economic feasibility of biofuel usage^{1,2,3}

be able to evaluate the use of biofuels in terms of its sustainability 1,2,3

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work and presentation

Entrance requirements

Mandatory: None

Recommended:

Reading list

Thiemann: Introduction to Biotechnology

Neal: Plant Biotechnology and Genetics: Principles, Techniques and Applications

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; pin-board; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Х		
Methodological competence			X
Social competence			X

last amended: March 2021

BE_23.3 Nanobiotechnology

4 (full time)

Study Semester: 6 (part time) Credit Points (ECTS): 5

6 (cooperative)

Workload

Contact time		Self-study	
Lecture/Seminar	45 h	Preparation for contact time	30 h
		Literature review	45 h
		Preparation for exams	30 h
Sum	45 h	Sum	105 h

Total workload: 150 h

Module coordinator

Prof. Dr. Kerstin Koch

Lecturers

Prof. Dr. Kerstin Koch

Teaching contents

The lecture/seminar is organized in three blocks. The first provides the basics of nanotechnology such as definition, history, mile stones; production techniques; bottom up and top-down techniques; microscopy techniques and properties of nanomaterials. The second part focuses on nano-biotechnology and includes diagnostics and therapy; nanostructured materials in regenerative medicine; analytical applications; nanoparticles and health risks; nano in food technology. The third part is related to applied fields of nanotechnology, such as nanotechnology and economy; energy use and production; nanotechnology and water; nanotechnology and the environment; funding, research and future perspectives.

Learning objectives

On successful completion of this module, students should

- know the main fields of nanotechnology use¹
- be able to discuss the advantages and potential risk on nanomaterial use²
- know examples of nanomaterial's and their specific attributes¹
- have improved their communication and presentation competence³

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work and student presentations

Entrance requirements

Mandatory: None

Recommended: Cell Biology and Microbiology (BE_01); Fundamentals of Chemistry (BE_02); Basics of Physics (BE_03)

Reading list

Manasi Karkare: Nanotechnology: Fundamentals and Applications Nanomaterials and Tissue Regeneration Open Access Journal

Nanoscape: The Journal for Undergraduate Research in Nanoscience Open Access Journal

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Graded presentation and graded written exam

Teaching materials and media

Projector; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	X		
Social competence		Χ	

BE_23.4 Fluid Mechanics and Systems Dynamics

4 (full time)

Study Semester: 6 (part time) Credit Points (ECTS): 5

6 (cooperative)

Workload

Contact time		Self-study	
Lecture, Exercise	30 h	Preparation for contact time	30 h
Practical training	30 h	Literature review	30 h
·		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr.-Ing. Sylvia Moenickes

Lecturers

Dr. Peter Henselder; Prof. Dr.-Ing. Sylvia Moenickes

Teaching contents

Fluid Mechanics: Basics: Fundamental fluid (liquids and gas) properties, Newtonian and non-Newtonian fluids, compressible and incompressible fluids, viscosity measurement, fluid statics; fluid flow: equations of motion for inviscid flows, flow phenomena, similitude; piping, seals, and valves: friction and piping, gaskets and mechanical seals, valves; flow measurement: pumps ejectors, blowers, and compressors; mixing; two-phase flow systems

Systems dynamics: Continuous models: linear and higher order models, compartment schemes, superposition; steady states and stability of systems, sensitivity; models in time and space

Learning objectives

On successful completion of this module, students should

Fluid Mechanics

- know the basic properties of fluids^{1,2}
- be able to use the different types balance equations 1,2,3
- be able to determine shear rates and their effect on cells 1,2,3
- be able to determine hydrostatic pressure distribution in non-flowing fluids^{1,2,3}
- be able to calculate pressure drops of complex networworks^{2,3,4}

Systems dynamics

- know how to mathematically describe dynamic processes¹
- be able to set up non-linear multi-compartment models^{2,3}
- be able to analyse a given system with respect to stability and sensitivity⁵
- know how to implement such systems in Matlab and run simulations^{3,4}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work and presentation; exercises

Entrance requirements

Mandatory: None

Recommended: Bioengineering Physics I (BE_03); Mathematics and Statistics (BE_04); Applied Mathematics (BE_12)

Reading list

Potter: Mechanics of Fluids

Fox, McDonald, Pritchard: Fluid Mechanics

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course

Lab reports (testate)

Teaching materials and media

Projector; white board; hand-outs; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	X		
Methodological competence	X		
Social competence			X

last amended: March 2021

BE_23.5 Module from any Bachelor Study Course at Faculty of Life Sciences at Rhine-Waal University of Applied Sciences

4 (full time)

Study Semester: 6 (part time) Credit Points (ECTS): 5

6 (cooperative)

Workload

Contact time		Self-study	
Lecture	60 h	Preparation for contact time	30 h
		Literature review	30 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Peter F. W. Simon

Lecturers

All lecturers of the faculty

Teaching contents

Depending on the chosen module to be elected from all bachelor study courses of the faculty of Life Sciences at Rhine-Waal University

Learning objectives

On successful completion of this module, students should

- have acquired knowledge from other areas of the faculty and deepened or enlarged their horizon¹
- understand the importance of getting information beyond their specialisation²
- be able to implement alternative ways and approaches to problem solving³
- be able to compare contents and learning outcomes of other study courses with their own achievements⁴

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Depending on chosen module

Entrance requirements

Depending on chosen module

Reading list

Depending on chosen module

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Depending on chosen module

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence		Χ	
Social competence			

BE_24 Downstream Processing

5 (full time)

Study Semester: 5 (part time) Credit Points (ECTS): 5

7 (cooperative)

Workload

	Contact time		Self-study	
Lecture	30	h	Preparation for contact time	45 h
Seminar	30	h	Literature review	20 h
			Preparation for exams	25 h
Sum	60	h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Joachim Fensterle

Lecturers

Dr. Martin Krehenbrink; Stefan Klein

Teaching contents

Lecture:

Principles of downstream processing from bio-suspensions; impact of fermentation process on product, pre-treatment of fermentation broth; cell harvest; cell/tissue disruption techniques; filtration; sedimentation, flocculation and centrifugation; product separation techniques: distillation, extraction, adsorption, evaporation; product purification: precipitation, membrane based processes, chromatography, crystallization; product formulation; conservation and storage: lyophilisation, spray drying, freezing, sterile filtration; denaturation and renaturation of proteins (inclusion bodies)

Seminar:

The content of the lectures will be reviewed and discussed using concrete real-world examples of integrated processes. Theoretical approaches to quantify and describe relevant processes will be practiced using worked examples. The selection of appropriate downstream procedures for example products will be practiced in the form of guided exercises.

Learning objectives

On successful completion of this module, students should

- have gained basic knowledge on biotechnological downstream procedures and the required equipment^{1,2}
- be able to select appropriate combinations of methods for the recovery of intra- and extracellular products^{2,3}
- know theoretical approaches to describe separation processes quantitatively in order to support the evaluation of experimental data^{4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory: Biochemistry (BE_09); Bioprocess Engineering (BE_19)

Recommended:

Reading list

Prasad: Downstream Process Technology: A New Horizon in Biotechnology

Scopes: Protein Purification: Principles and Practice

Janson: Protein Purification: Principles, High Resolution Methods, and Applications

Desai: Downstream Processing of Proteins: Methods and Protocols

Storhas: Bioverfahrensentwicklung

Chmiel: Bioprozesstechnik

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	X		
Methodological competence	X		
Social competence			X

BE_25

Industrial Biotechnology

5 (full time)

Study Semester: 7 (part time)

Credit Points (ECTS):

5

7 (cooperative)

Workload

C	contact time	Self-study	
Lecture	30 h	Preparation for contact time	45 h
Seminar	30 h	Literature review	20 h
		Preparation for exams	25 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Joachim Fensterle

Lecturers

Prof. Dr. Joachim Fensterle

Teaching contents

Lecture:

introduction: scope and impact IB, major historical milestones; industrial system biology: introduction to system biology, metabolic network models, example of applied industrial system biology; production: production organisms, industrial media, equipment, optimization; metabolic pathways and overproduction of metabolites; biocatalysis: introduction, directed evolution, applied biocatalysis; major fields of industrial biotechnology: chemical, pharmaceutical IB, food and feed IB, paper and pulp IB; environmental, economic and social aspects; project in small groups: setting up of an industrial process, including flowchart, in selected fields; analyzing the market, potential market price and definition of a production goal; scaling the process according to the production goal; calculation of process economics (investment costs, process costs, additional costs,...) and rentability

Seminar:

Introduction to the process simulation software SuperPro Designer; setting up a representative industrial biotechnology process (including mass balances) using SuperPro Designer in project groups; optimizing the process and analyzing of economic parameters; presenting the project results

Learning objectives

On successful completion of this module, students should

- know the topics of industrial biotechnology¹
- understand how to develop production organisms and production processes^{2,3}
- understand the impact of global analysis tools (Omics) on strain and process development²
- be aware of ecological and economic aspects of industrial biotechnology ^{4,5}
- be able to combine the knowledge acquired in biotechnological, engineering and economics disciplines to develop a industrial biotechnological process^{3,4,5}
- be able to consider the social impact of professional decisions^{2,3} and thus deepen their capacity to engage in society^{2,3}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; project work; group work; exercises; presentations; written reports

Entrance requirements

Mandatory: Biochemistry (BE_09); Applied Microbiology (BE_11)

Recommended:

Reading list

Soetaert and Vandamme: Industrial Biotechnology: Sustainable Growth and Economic Success

Baltz, Demain and Davies: Manual of Industrial Microbiology and Biotechnology

Okafor: Modern Industrial Microbiology and Biotechnology

Waits: Industrial Microbiology

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	X		
Methodological competence	X		
Social competence		X	

BE_26 Integrated Management Systems and Quality Management

5 (full time)

Study Semester: 7 (part time)

Credit Points (ECTS):

5

7 (cooperative)

Workload

	Contact time	Self-study	
Lecture	15 h	Preparation for contact time	45 h
Seminar	30 h	Literature review	20 h
Exercise	15 h	Preparation for exams	25 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr.-Ing. Rudolf Schumachers

Lecturers

Dr: Bernd Kimpfel

Teaching contents

Historical development of integrated and sustainability management; process orientation; international standards for integrated and sustainability management systems (e.g. ISO 9001, EMAS, ISO 14001, ISO 45001, OHSAS 18001, ISO 19011, ISO 26000); methods of system control and evaluation; auditing; stakeholder concept; occupational health and safety, hygiene; quality management; environmental management; risk management (e.g. ISO 31000); process of developing and continuously updating user-oriented sustainability management systems in agricultural contexts (e.g. GLOBALGAP, EC 834/2007, NOP); management systems and food safety (e.g. Codex Alimentarius, ISO 22000, HACCP); legal requirements in food safety; controlling food safety and regulatory agencies

Learning objectives

On successful completion of this module, students should

- know the components of integrated and sustainability management systems, standards and the legal framework¹
- be able to apply covered instruments in case studies for system control, evaluation and improvement^{2,3}
- be able to develop concepts and strategies for the implementation of sustainability management systems³
- be able to analyse food safety and product quality using the relevant standards and procedures^{3,4}
- be able to analyse⁴ and improve⁵ sustainability management systems for sustainable supply chains
- be able to evaluate and critically discuss concepts of integrated and sustainable management⁵

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; exercise; self-study; group work

Entrance requirements

Mandatory: none

Recommended: none

Reading list

International Standards ISO 9000 ff, 14000 ff, 45001, 19011, 26000, 31000

Guidelines on Occupational Safety and Health Management Systems, ILO-OSH 2001; OHSAS 18001

Jackson: The ISO 14001 Implementation Guide

Zink: Total Quality Management as a Holistic Management Concept

Goetsch: Quality Management for Organizational Excellence: Introduction to Total Quality

Forster: Practical Management Handbook

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material; A/V media; case studies

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	X		
Methodological competence	X		
Social competence			X

BE_27.1 Metabolic Engineering

5 (full time)

Study Semester: 7 or 9 (part time) Credit Points (ECTS): 5

7 (cooperative)

Workload

Contact time		Self-study	
Seminar/Project	60 h	Preparation for contact time	30 h
		Literature review	30 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Mònica Palmada Fenés

Lecturers

Dr. Georg Lentzen

Teaching contents

Basic principles of metabolic engineering; regulation of metabolic pathways; modeling tools; metabolomics; flux analysis, hosts for metabolic engineering: *E. coli*, yeast, *Bacillus subtilis*, streptomyces, filamentous fungi, mammalian cells

Learning objectives

On successful completion of this module, students should

- understand the principles of enzyme function, stoichiometric analysis and energetics of metabolism²
- know several models (steady-state, dynamic) of microbial metabolism and recognize their advantages and disadvantages ^{1,2}
- be able to develop metabolic network models^{3,4,5}
- be able to apply knowledge from molecular biology, biochemistry and applied microbiology courses for the study of metabolism^{2,4}
- be able to present and discuss a scientific paper relevant to metabolic engineering^{4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work and presentation

Entrance requirements

Mandatory: None

Recommended: Biochemistry (BE_09); Applied Microbiology (BE_11); Enzyme Engineering (BE_20)

Reading list

Kholodenko and Westerhoff: Metabolic Engineering in the Post Genomic Era Wendisch: Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering

Further literature will be provided by the lecturer

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; pin-board; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_27.2 Biological Physics

5 (full time)

Study Semester: 7 or 9 (part time) Credit Points (ECTS): 5

7 (cooperative)

Workload

Contact tin	ne	Self-study	
Lecture/Seminar	30 h	Preparation for contact time	30 h
Lab course	30 h	Literature review	30 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Björn Neu

Lecturers

Prof. Dr. Björn Neu

Teaching contents

Lecture/Seminar: This course introduces the methods of physics and physical chemistry to study biological systems. Specific topics include: model building in biology; cell physiology; macromolecular assemblies and devices; thermal motion; diffusion law; biological applications of the diffusion law; friction in fluids; self assembly of amphiphiles, molecular devices found in cells; mechanochemcial motors; kinetics of molecular machines; machines in membranes

Lab Course: This part of the course introduces topics and applications in the area of biological/medical physics such as optical tweezers, cellular mechanical properties, medical imaging, impedance spectroscopy and electroencephalography.

Learning objectives

On successful completion of this module, students should

- understand the basic theories and methods in biological physics 1,2
- be able to analyze and interpret molecular and cellular biology processes and data with tools
 of physics and mathematics^{3,4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work and presentation

Entrance requirements

Mandatory: None

Recommended: BE_13 Physical Chemistry

Reading list

Nelson and Freeman: Biological Physics Phillips: Physical Biology of the Cell

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; pin-board; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_27.3 Environmental Biotechnology and Microalgae

5 (full time)

Study Semester: 7 or 9 (part time) Credit Points (ECTS): 5

7 (cooperative)

Workload

Contact tir	ne	Self-study	
Seminar/Project	60 h	Preparation for contact time	30 h
		Literature review	30 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Joachim Fensterle

Lecturers

Prof. Dr. habil. Waltraud Kofer

Teaching contents

Environmental Biotechnology: microbial biodegradation, microbial bioaugmentation, biofuels, biogas, environmental (microbiological) bioprocessing, sustainable biotechnology, green process development. Selected environmental biotechnology approaches (e.g. biodegradation of persistent pesticides in soil, biosorption of metals, optimization of biogas production, bioconversion of lignin)

Microalgae: Prokaryotic and eukaryotic cells; Taxonomy of algae; Anatomy and physiology of algae; Growth forms and control of algal growth; Algae and the environment; Algae as bioindicators; Sampling, biomass estimation and counts of freshwater algae; Microalgae biomass production and harvesting; Microalgae as a feedstock for biofuels

Learning objectives

On successful completion of this module, students should

Environmental Biotechnology

- know the principles of microbiological environmental processes¹
- be able to name examples¹
- be able to develop and present a selected environmental biotechnology approach^{3,4,5}

Microalgae

- have been introduced to the diversity of algae and have gained basic knowledge in anatomy, physiology, and growth patterns of algae¹
- comprehend the ecological importance of algae in different ecosystems and how the algae's sensitivity qualifies them as bioindicators^{1,2,3}
- have been introduced to the fundamentals of biological process engineering and monitoring and thus will be able to understand the technical background to the use of microalgae cultivation for the production of biofuel^{1,2,3,4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work and presentation

Entrance requirements

Mandatory: None

Recommended: Applied microbiology (BE_11)

Reading list

Satyanarayana: Microorganisms in Sustainable Agriculture and Biotechnology

Benkeblia: Sustainable Agriculture and New Biotechnologies

OECD: The Application of Biotechnology to Industrial Sustainability

Antranikian: Angewandte Mikrobiologie

Lee: Phycology

Bellinger and Sigee: Freshwater algae: identification and use as bioindicators

Gouveia: Microalgae as a Feedstock for Biofuels

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; pin-board; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X

BE_27.4 Pharmaceutical Biotechnology and Immunology

5 (full time)

Study Semester: 7 or 9 (part time) Credit Points (ECTS): 5

7 (cooperative)

Workload

Contact time		Self-study	
Lecture/Seminar	60 h	Preparation for contact time	30 h
		Literature review	30 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Joachim Fensterle

Lecturers

Prof. Dr. Joachim Fensterle

Teaching contents

Pharmaceutical Biotechnology: Definition and introduction into biopharmaceutical products; prokaryotic cells, mammalian cells, plants and transgenic animals as sources for biopharmaceuticals; the drug development process – from discovery to approval; drug approval / regulatory aspects in Europe and U;. GxP.; typical production schemes, downstream processing and analytical processes for protein biopharmaceuticals; gene therapy; selected biopharmaceutical products

Immunology: Overview of the innate and adaptive immune system, haematopoiesis, lymphocyte maturation, somatic recombination, affinity maturation, innate immune system / complement, cytokines, effector mechanisms of cellular and humoral immunity, selected examples of immunity to microbes, tumorimmunology, autoimmunity, immunodeficiencies

Learning objectives

On successful completion of this module, students should

- know biopharmaceutical products and their sources¹
- understand the drug development process^{1,2}
- know regulatory aspects of development / approval and production¹
- understand basic production processes^{1,2}
- be able to name selected biopharmaceutical products^{1,3}
- be able to design a schematic development plan for a biopharmaceutical product^{3,4,5}
- know essential components of the innate and adaptive branch of the immune system¹
- know and describe the processes and kinetics in an adaptive humoral and cellular response¹
- know, apply and present selected examples of immunity based on original publications 1,2,3,4,5

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Lecture; self-study; group work and presentation

Entrance requirements

Mandatory: None

Recommended: Biochemistry (BE_09), Applied Microbiology (BE_11), Bioprocess Engineering (BE_19)

Reading list

Kayser: Pharmaceutical Biotechnology – Drug Discovery and Clinical Applications

Walsh: Pharmaceutical Biotechnology – Concepts and Applications.

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; pin-board; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence		Χ	
Social competence			Χ

BE_27.5 Biopolymers

5 (full time)

Study Semester: 7 or 9 (part time) Credit Points (ECTS):

7 (cooperative)

Workload

Contact time		Self-study	
Lecture	30 h	Preparation for contact time	30 h
Seminar	15 h	Literature review	30 h
Lab Course	15 h	Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Peter F. W. Simon

Lecturers

Prof. Dr. Peter F. W. Simon

Teaching contents

Lecture:

detailed knowledge of the structure, function, properties, and use of biopolymers; distribution functions; molecular structure of typical biological materials such as starch and rubber as well as synthetic material such as poly lactic acid; mechanical and thermal properties of biopolymers and their analysis; thermodynamics in solution of biopolymers with a special focus on the determination of the molar mass distribution; degradation of biopolymers; comparison of the environmental impact of biopolymers and synthetic polymers.

Lab Course:

synthesis of model polymers by step growth and chain growth mechanism; coagulation and properties of natural rubber; identification polymer material

Learning objectives

On successful completion of this module, students should

- be able to identify and evaluate biopolymer-based materials due to their molecular features^{1,2}
- be able to identify specific biopolymers to biological structures in nature^{2,3}
- be able to name different approaches to synthesize different types of biopolymer-based materials^{3,4}
- be able to suggest suitable methods to analyse the chemical and physical properties of biopolymer-based materials^{3,4}
- be able to describe the application of biopolymer-based materials and appreciate their importance in everyday life⁵

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

5

Teaching and learning methods

Lecture; self-study; group work and presentation

Entrance requirements

Mandatory: None

Recommended: Fundamentals of Chemistry (BE_02); Bioengineering Physics I (BE_03); BE_04 Mathematics (BE_04); Applied Chemistry (BE_08); Physical Chemistry (BE_13); Instrumental Analytics (BE_14)

Reading list

Hiemenz and Lodge: Polymer Chemistry

Smidsrod: Biopolymer Chemistry

Plackett (Ed.): Biopolymers, New Materials for Sustainable Films and Coatings

Fakirov and Bhattacharyya: Engineering Biopolymers

Kalia and Avérous: Biopolymers: Biomedical and Environmental Applications

Examination

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes; certificate for lab course

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; pin-board; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	X		
Social competence			X

BE_27.6 Module from any Bachelor Study Course at Faculty of Life Science at Rhine-Waal University of Applied

Sciences

5 (full time)

7 (cooperative)

Study Semester: 7 or 9 (part time)

Credit Points (ECTS):

5

Workload

Contact time		Self-study	
Lecture	60 h	Preparation for contact time	30 h
		Literature review	30 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Peter F. W. Simon

Lecturers

All lecturers of the faculty

Teaching contents

Depending on the chosen module to be elected from all bachelor study courses of the faculty of Life Sciences of Rhine-Waal University

Learning objectives

On successful completion of this module, students should

- have acquired knowledge from other areas of the faculty and deepened or enlarged their horizon¹
- understand the importance of getting information beyond their specialisation²
- be able to implement alternative ways and approaches to problem solving³
- be able to compare contents and learning outcomes of other study courses with their own achievements⁴

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Depending on chosen module

Entrance requirements

Depending on chosen module

Reading list

Depending on chosen module

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Depending on chosen module

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence		Χ	
Social competence			

BE_28

Internship or Study Abroad

6 (full time)

Study Semester: 1–7 (part time)

8 (cooperative)

Workload

Contact time	Self-study
Sum	Sum 900 h

Credit Points (ECTS):

30

Total workload: 900 h

Module coordinator

Prof. Dr. Björn Neu

Lecturers

Depends on selected activity

Teaching contents

Internship: Intention of the work placement is for the students to work in one or more functional divisions/branches of a company in order to implement knowledge and methods from their studies. The students are requested to consider the coherencies of economic, social and environmental aspects. After finishing the internship, the experience gained during the practical semester must be summarized in a written report according to criteria defined beforehand by the student and the supervising professor. The work placement can also be pursued abroad.

Study abroad: Instead of the work placement the students have the option to study a semester at a university abroad in order to deepen their theoretical and practical knowledge. The students attend selected classes and pass the relevant exams. On completion of their study abroad, students should be able to discuss relevant issues in a cross cultural and academic surrounding. Upon agreement of study abroad student and supervisor fix the intended outcomes. Upon return from study abroad the supervisor will check the written report based on the following criteria: expectations vs. the achievements actually made, validity of experiences for the studies, active learning, structuring of experiences achieved, effective competence to solve problems in an unfamiliar surrounding.

Learning objectives

Internship: The learning outcomes result from the selected activity and the business environment of companies, organisations and institutions. It is necessary that these partners and the university agree on contents and outcomes in order to allow for an appropriate coordination of the study.

Study abroad: The learning outcomes depend on where and how the study abroad is pursued. The student will improve her/his language skills in an authentic surrounding. The student has to coordinate the selection of classes with the supervisor of this module for recognition of assembled ECTS.

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Depends on selected activity

Entrance requirements

Mandatory: Min. 90 ECTS and all modules of first and second semester

Recommended:

Reading list

Depends on selected activity

Examination

Certificate according to §§ 14 and 20 General Examination Regulations for Bachelor's and Master's Degree Programmes

Internship: written report

Study abroad: successful completion of 15 ECTC, written report and presentation to supervisor of

study abroad

Teaching materials and media

Depends on selected activity

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence		Χ	
Methodological competence		Χ	
Social competence		Χ	

BE_29 Academic Methods and Principles

7 (full time)

Study Semester: 9 (part time) Credit Points (ECTS): 5

9 (cooperative)

Workload

Contact time		Self-study	
Seminar	20 h	Preparation for contact time	40 h
Exercise	30 h	Literature review	60 h
Sum	50 h	Sum	100 h

Total workload: 150 h

Module coordinator

Prof. Dr. Björn Neu

Lecturers

N.N.

Teaching contents

Techniques of scientific work; basics of scientific work; structure of a scientific work; use of a library and scientific literature; literature research: presentation of results and topics; handling specialist literature: excerption; handling and proving arguments; presentation of results; presentation techniques; writing an academic paper

Learning objectives

On successful completion of this module, students should

- know the principles of scientific work and are able to apply and document these in practice^{1,3}
- know the general structure of a scientific work and are able to arrange and format it 1,3
- be able to document scientific issues³
- be acquainted with methodical aspects; internalize science-ethical issues like copyright, correct citation, plagiarism, etc.^{1,2}
- be able to judge references and sources with respect to their relevance and significance 4,5

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and Judgement

Teaching and learning methods

Lecture; self-study; group work; exercises

Entrance requirements

Mandatory: None

Recommended:

Reading list

Literature will be provided by the lecturer

Examination

Certificate according to §§ 14 and 20 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; AV-Media

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence		Χ	
Methodological competence	Χ		
Social competence			X

BE_30.1 Project reg. Academic Principles and Methods in Preparation of Bachelor Thesis

7 (full time)

Study Semester: 9 (part time) Credit Points (ECTS): 10

9 (cooperative)

Workload

Contact time		Self-study	
Project practice-oriented	30 h	Preparation for contact time	20 h
		Literature review	50 h
		practical, scientific work	180 h
		writing project report	20 h
Sum	30 h	Sum	270 h

Total workload: 300 h

Module coordinator

Prof. Dr. Joachim Fensterle

Lecturers

all lecturers of the faculty

Teaching contents

The student should be prepared for his or her bachelor thesis through applied research. As a rule, the intended supervisor of the thesis will enable the student to gain theoretical and practical experience in his/her own research environment by working independently on a scientific topic that is preferably close to the planned thesis. All aspects of scientific work are taken up here, i.e. in addition to practical work (e.g. in the laboratory), in particular literature studies on the content and methodological preparation of the topic, experiment planning, scientifically appropriate documentation and writing of a final report, as well as presentation of the (interim) results in status seminars and oral final presentation if necessary.

The planned workload of 300 hours is to be completed as a rule during a continuous period of 6 weeks after completion of the internship, whereby the contact time and self-study portions can vary depending on the type of research activity. The figures given in the above table are therefore to be understood as a guideline.

The project for the preparation of the Bachelor's thesis can also be carried out in the company of the internship.

Learning objectives

On successful completion of this module, students should

- be able to work independently with scientific literature³
- be able to apply methods of theoretical and scientific work ^{1,3}
- be able to correctly document scientific work³
- have deepened their specialist knowledge on specific topics^{1,3,4}
- have expanded their ability to work in a team³

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

practical scientific work

Entrance requirements

Mandatory: None

Recommended: Internship (BE_28); Academic Methods and Principles (BE_29); relevant basic courses of the semesters 1–5 according to the choice of topic

Reading list

Depending on the chosen subject area, scientific literature is made available by the supervisor or procured by the student.

Examination

Certificate according to §§ 14 and 20 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Relevant subject-related literature; if applicable, relevant laboratory equipment

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence		X	

BE_30.2 Language Course for Students (Without Previous Knowledge)

1 (winter term/summer term)

Study Semester:

Credit Points (ECTS):

5

Workload

Contact time		Self-study	
Language course	52 h	Preparation for contact time 2	
		Self study	50 h
		Preparation for exams	20 h
Sum	52 h	Sum	98 h

Total workload: 150 h

Module coordinator

International Center: Office of Languages and Intercultural Communication

Lecturers

Ratka Sosovska; Frau Elfriede van Dijk (LfbA DaF)

Teaching contents

Module contents are based on the "can-do statements" of the Common European Framework of Reference for Languages (CEFR) for the levels A1–B2. All four skills areas – Listening, Speaking, Reading, Writing – are practiced.

Learning objectives

The main objective of this module is to develop students' verbal communication skills as well as to impart to them effective general learning and communication strategies. Upon successful completion of this module, students should be able to navigate common everyday situations using simple linguistic means of communication.

On successful completion of this module, students should

Xxxhochgestellte Zahl

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

classroom instruction; language practice in Language Lab; self-study

Entrance requirements

Level A1.1: The main objective of this module is to develop students' verbal communication skills in German as well as to impart to them effective general learning and communication strategies. Upon successful completion of this module, students should be able to navigate common everyday situations using simple linguistic means of communication.

Level A1.2: The main objective of this module is the continued development of students' verbal communication skills by expanding their passive and active vocabularies and solidifying their grasp on underlying grammatical structures. Upon successful completion of this module, students should be able to navigate common everyday situations using simple linguistic means of communication.

Level A2.1: The main objective of this module is the continued development of students' communicative skills by expanding and solidifying their passive and active vocabularies, as well as their understanding and use of more advanced grammatical structures. Upon successful completion of this module, students should be able to navigate many everyday situations using limited means of communication, as well as produce and understand commonly used terms and phrases in German. Continued practice of learning strategies is also a central component of this module.

Level A2.2: The main objective of this module is the continued development of students' communicative skills by expanding and solidifying their passive and active vocabularies, as well as their understanding and use of advanced grammatical structures. Upon successful completion of this module, students should be able to navigate many everyday situations using limited means of communication, as well as produce and understand commonly used terms and phrases in German. Continued practice of learning strategies is also a central component of this module.

Level B1.1: The main objective of this module is the development of applied language skills so that students can communicate effectively in German both on and off campus. Developing effective writing skills receives more focus at the B1 level as well. Upon successful completion of this module, students should be able to give short presentations on specific (intercultural) topics and answer related questions from the audience.

Reading list

Studio [21] Das Deutschbuch A1-B1/+Medienpaket Studio d Die Mittelstufe (B2/1 oder B2/2)

Examination

Certificate according to §§ 14 and 20 General Examination Regulations for Bachelor's and Master's Degree Programmes

A recognised certificate obtained elsewhere, confirming level B1.2 or higher, may be recognised.

Teaching materials and media

Projector; white/black board; hand-outs; flipchart; visualisation aids for presentation; demonstration material

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence		Χ	
Methodological competence			X
Social competence	X		

last amended: May 2019

BE_30.3 Module from Catalogue Elective Modules 1 and 2 of Study Course Bioengineering

7 (full time)

Study Semester: 9 (part time)

Credit Points (ECTS):

5

8 (cooperative)

Workload

Contact time		Self-study	
Lecture	60 h	Preparation for contact time	30 h
		Literature review	30 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Peter F. W. Simon

Lecturers

All lecturers of the study course

Teaching contents

Depending on the chosen module to be elected from catalogues Elective Modules 1 and 2 of Bioengineering

Learning objectives

On successful completion of this module, students should

- have broadened their knowledge of the chosen focus fields¹
- understand the importance of broadening their knowledge beyond their specialisation²
- be able to implement alternative ways and approaches to problem solving³
- be able to compare contents and learning outcomes with their own achievements⁴

Teaching and learning methods

Depending on chosen module

Entrance requirements

Depending on chosen module

Reading list

Depending on chosen module

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Depending on chosen module

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence		Χ	
Social competence			

BE_30.4 Module from any Bachelor Study Course at Rhine-Waal University of Applied Sciences

7 (full time)

8 (cooperative)

Study Semester: 9 (part time) C

Credit Points (ECTS):

5

Workload

Contact time		Self-study	
Lecture	60 h	Preparation for contact time	30 h
		Literature review	30 h
		Preparation for exams	30 h
Sum	60 h	Sum	90 h

Total workload: 150 h

Module coordinator

Prof. Dr. Peter F. W. Simon

Lecturers

All lecturers of the university

Teaching contents

Depending on the chosen module to be elected from any bachelor study course of Rhine-Waal University

Learning objectives

On successful completion of this module, students should

- have acquired knowledge from other areas of the university and deepened or enlarged their horizon¹
- understand the importance of getting information beyond their specialisation²
- be able to implement alternative ways and approaches to problem solving³
- be able to compare contents and learning outcomes of other study courses with their own achievements⁴

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and judgement

Teaching and learning methods

Depending on chosen module

Entrance requirements

Depending on chosen module

Reading list

Depending on chosen module

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Depending on chosen module

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence		Χ	
Social competence			

BE_31 Bachelor Thesis

7 (full time)

Study Semester: 8 (part time) Credit Points (ECTS): 12

9 (cooperative)

Workload

Contact time	Self-study	
Sum	Sum 360 h	

Total workload: 360 h

Module coordinator

Prof. Dr. Björn Neu

Lecturers

All lecturers of the faculty

Teaching contents

The contents of the bachelor thesis are specific and have to be coordinated with the chosen/elected instructor/lecturer. The assigned task will be adequately described and documented as well as the chosen approach, methodology and results.

Learning objectives

On successful completion of this module, students should

- demonstrate that they are able to complete a praxis-oriented task from their field of study without help and within an allotted period of time³
- be able to implement technical knowledge in a scientifically appropriate way^{3,4}
- be able to structure the necessary processes and tasks necessary for solving the conceptual formulation, control their progress and adjust if necessary³
- be able to document their starting point, the chosen approach and their findings in such a way that they fulfill the requirements of a scientific publication³

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and Judgement

Teaching and learning methods

None

Entrance requirements

Mandatory: Depending on chosen subject/task; minimum of 180 ECTS

Recommended:

Reading list

Depending on chosen subject/task

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes and § 7 Examination Regulations for study programme: written thesis of approx. 40–100 pages

Teaching materials and media

Specific

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			

BE_32 Colloquium

7 (full time)

Study Semester: 9 (part time) Credit Points (ECTS): 3

9 (cooperative)

Workload

Contact time	Self-study Self-study
Sum	Sum 90 h

Total workload: 90 h

Module coordinator

Prof. Dr. Björn Neu

Lecturers

All lecturers of the faculty

Teaching contents

The content of the colloquium is based on the bachelor thesis.

Learning objectives

The students

- present the results of their bachelor thesis during the colloquium⁵
- put their research and findings in a context with the practical approach and present their findings in a scientific and structured way^{1,2,3}
- justify their chosen approach autonomously by taking into consideration how far their results were influenced by assumptions/presuppositions and simplifications ^{2,3,4}
- are able to analyze questions regarding their thesis and their findings and to answer these within the frame of the technical and non-technical context^{3,4,5}

¹Knowledge; ²Comprehension; ³Application; ⁴Analysis; ⁵Synthesis and Judgement

Teaching and learning methods

None

Entrance requirements

Mandatory: minimum of 207 ECTS

Recommended:

Reading list

Depending on chosen subject/task

Graded exam according to §§ 14, 17–19 General Examination Regulations for Bachelor's and Master's Degree Programmes

Teaching materials and media

Specific

Areas of competence

Area of competence	Core area	Partly relevant	Of minor relevance
Professional competence	Χ		
Methodological competence	Χ		
Social competence			X