

Module Handbook

For the study program

Bionics M.Sc.

Kleve, November 2018

Content

Curriculum Bionics M.Sc.	3
Core Modules	4
3300 Research Methods for Engineers	4
3301 Numerical Methods of Simulation	6
3302 General Management	8
3600 Principles of Bionics	10
3601 Bionics of Sensing and Materials	12
Focus Field Robotic	14
3402 Principles of Software Development	14
3603 Human Machine Interaction	17
3606 Physics of Agent Behaviour	19
3407 Computational Multibody Dynamics	21
3602 Bioinspired Machine Learning	23
3604 Autonomous Robotics	26
3605 Evolutionary Algorithms	28
Focus Field Materials	31
3608 Sustainability	31
3609 Advanced Chemistry	33
3611 Bioplastics	35
3613 Biomimetic Engineering Materials	38
3403 Materials Selection and Simulation	41
3610 Smart Materials and Surface Technology	43
3612 Lightweight Materials and Joining	45
Final Semester	47
3303 Appled Research Project - ARP	47
3304 Master Thesis	48
3305 Colloquium	40

Curriculum Bionics M.Sc.

	ulum MR	HPW	L.		Туре				Examinatio	n form	СР		HPW	
Curric	culum MB	111 11	٧	SL	S	Ü	Pra	Pro	Attestation	graded	O.	SS 1	ws	SS 3
		Coi	re I	mo	dul	es	3							
Module Code	Module													
3300	Research Methods for Engineers	3	1			1	1		X		5		Х	
3301	Numerical Methods of Simulation	3	2			1				Х	5		Х	
3302	General Management	3	2				1		Х		5	Х		
3600	Principles of Bionics	3	2				1			Х	5	Х		
3601	Bionics of Sensing	3	2				1			х	5		Х	
Focusfie	Id Robotic*													
	Core Moduls													
3402	Principles of Software Development	3	2				1			х	5	х		
Module Code	Focusfield Moduls													
3603	Human Machine Interaction	3	2				1		Х		5	х		
3606	Physics of Agent Behaviour	3	2		t		1			х	5	х		
3407	Computational Multibody Dynamics	3	1		t		2			X	5	х		
3602	Bioinspired Machine Learning	3	2			1				X	5		х	
3604	Autonomous Robotics	3	2		t		1			X	5		Х	
3605	Evolutionary Algorithms	3	2				1			х	5		Х	
		_							1	1		1		
	Core Moduls	3	2			1				X	5		x	
Module Code 3608	Core Moduls Sustainability	3	2			1				x	5		x	
Module Code	Core Moduls Sustainability Focusfield Moduls					1	1						X	
Module Code 3608 Module Code 3609	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials	3	2			1	1 1		Y	X X	5	X	x	
Module Code 3608 Module Code 3609 3611	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics	3 3	2 2			1	1 1 1		X	X	5 5	х	X	
Module Code 3608 Module Code 3609	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials	3 3 3	2			1	1		X	X X	5 5 5	X X	X	
Module Code 3608 Module Code 3609 3611 3613 3403	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics Biomimetic Engineering Materials Materials Selection and Simulation	3 3	2 2 2			1	1		X	X	5 5	х	x	
Module Code 3608 Module Code 3609 3611 3613	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics Biomimetic Engineering Materials	3 3 3 3	2 2 2 2			1	1 1 1		x	x x x	5 5 5 5	X X		
Module Code 3608 Module Code 3609 3611 3613 3403 3610	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics Biomimetic Engineering Materials Materials Selection and Simulation Smart Materials and Surface Technology	3 3 3 3 3 3	2 2 2 2 2 2	San			1 1 1 1		X	X X X	5 5 5 5 5	X X	x	
Module Code 3608 Module Code 3609 3611 3613 3403 3610 3612	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics Biomimetic Engineering Materials Materials Selection and Simulation Smart Materials and Surface Technology Leightweight Materials and Joining	3 3 3 3 3	2 2 2 2 2 2	Sen	nes		1 1 1 1		x	X X X	5 5 5 5 5	X X	x	
Module Code 3608 Module Code 3609 3611 3613 3403 3610 3612	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics Biomimetic Engineering Materials Materials Selection and Simulation Smart Materials and Surface Technology Leightweight Materials and Joining Module	3 3 3 3 3 3	2 2 2 2 2 2	Sen	nes		1 1 1 1		x	X X X	5 5 5 5 5 5	X X	x	X
Module Code 3608 Module Code 3609 3611 3613 3403 3610 3612 Module Code 3303	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics Biomimetic Engineering Materials Materials Selection and Simulation Smart Materials and Surface Technology Leightweight Materials and Joining Module Applied Research Project (ARP)	3 3 3 3 3 3	2 2 2 2 2 2	Sen	nes		1 1 1 1		X	X X X	5 5 5 5 5 5 5	X X	x	X
Module Code 3608 Module Code 3609 3611 3613 3403 3610 3612 Module Code 3303 3304	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics Biomimetic Engineering Materials Materials Selection and Simulation Smart Materials and Surface Technology Leightweight Materials and Joining Module Applied Research Project (ARP) Master thesis	3 3 3 3 3 3	2 2 2 2 2 2	Sen	nes		1 1 1 1		X	X X X	5 5 5 5 5 5 5 5	X X	x	х
Module Code 3608 Module Code 3609 3611 3613 3403 3610 3612 Module Code 3303	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics Biomimetic Engineering Materials Materials Selection and Simulation Smart Materials and Surface Technology Leightweight Materials and Joining Module Applied Research Project (ARP)	3 3 3 3 3 3	2 2 2 2 2 2	Sen	nes		1 1 1 1		X	X X X	5 5 5 5 5 5 5	X X	x	_
Module Code 3608 Module Code 3609 3611 3613 3403 3610 3612 Module Code 3303 3304	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics Biomimetic Engineering Materials Materials Selection and Simulation Smart Materials and Surface Technology Leightweight Materials and Joining Module Applied Research Project (ARP) Master thesis	3 3 3 3 3 3 3 Fina	2 2 2 2 2 2 2 2 2	nehme	erzahl	für c	1 1 1 1 1		mmen eines Fokusfe	X X X X X	5 5 5 5 5 5 5 5 22 3	X X X	X X	X X
Module Code 3608 Module Code 3609 3611 3613 3403 3610 3612 Module Code 3303 3304 3305	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics Biomimetic Engineering Materials Materials Selection and Simulation Smart Materials and Surface Technology Leightweight Materials and Joining Module Applied Research Project (ARP) Master thesis Colloquium	3 3 3 3 3 3 3 Fina	2 2 2 2 2 2 2 2 2	nehme	erzahl	für c	1 1 1 1 1		mmen eines Fokusfe	X X X X X	5 5 5 5 5 5 5 5 22 3	X X X	X X	X X
Module Code 3608 Module Code 3609 3611 3613 3403 3610 3612 Module Code 3303 3304 3305 Explanations	Core Moduls Sustainability Focusfield Moduls Advanced Chemistry of Materials Bioplastics Biomimetic Engineering Materials Materials Selection and Simulation Smart Materials and Surface Technology Leightweight Materials and Joining Module Applied Research Project (ARP) Master thesis Colloquium	3 3 3 3 3 3 3 Fina	2 2 2 2 2 2 2 2 2	nehme	erzahl	für c	1 1 1 1 1		mmen eines Fokusfe	X X X X X	5 5 5 5 5 5 5 5 22 3	X X X	X X	X X

Core Modules

3300 Research Methods for Engineers

Module name:	Research Methods for Engineers	
Module code:	3300	
Semester:	Winterterm	
Module coordinator:	Prof. Dr. Andy Stamm	
Lecturer:	Prof. Dr. Andy Stamm	
Language:	English	
Place in curriculum:	Common Core subject	
Timetabled hours:	Lectures: Tutorials: Laboratory Sessions:	1 HPW 1 HPW 1 HPW
Workload:	45 h attendance 75 h preparation and review 30 h report preparation	
Credits:	5	
Recommended prerequisites:	Basic courses in programming, electrodesign, CAD, and materials.	ronics, engineering
Module objectives:	After completing the course the stude of project related work and the practic their acquired knowledge. They can f information independently using a va can construct useful theories, hypothestatements, then document and preseprofessional manner. They have also side of engineering science with introinstrumentation and measurement in They have learned to design and maland to interpret the data obtained with built and debugged themselves.	cal implementation of ind relevant riety of sources. They eses and work ent their work in a learned the practical eductions to real environments. ke their own test rigs
Content:	 Introduction to Engineering Resea Literature Search & Review Developing a Research Plan Statistical Design and Analysis Optimisation Techniques Design and Construction of Experimentation Amplifier Design and Data Acquis Software Control of Experimental 	imental Apparatus ition

	Signal in Noise Considerations
	Filter Design: Mechanical, Electrical and Software
	Numerical Treatment of Experimental Data
	Qualitative Research Methods
	Report Writing and Presentation
	 Collaborative Working & Resource Planning; Gantt Charts; Online Collaboration Tools
Assessment:	Attestation: Written reports and oral presentations
Forms of media:	Whiteboard, PowerPoint, Projector, Online
Literature:	Lecture notes - Thiel DV (2014) Research methods for engineers. Cambridge UP. ISBN 978-1-139-54232-6 - Horowitz & Hill. The art of electronics. Cambridge UP. ISBN 978-0-521-80926-9

3301 Numerical Methods of Simulation

3301 Numerical Methous				
Module name:	Numerical Methods for Simulation			
Module code:	3301			
Semester:	Winterterm			
Module coordinator:	Prof. Dr. Alexander Struck			
Lecturer:	Prof. Dr. Alexander Struck			
Language:	English			
Place in curriculum:	Common Core module			
Timetabled hours:	Lectures: 2 HPW Exercises: 1 HPW			
Workload:	45 h attendance 75 h preparation and review 30 h exam preparation			
Credits:	5			
Recommended prerequisites:				
Module objectives:	 Learning some standard concepts of mathematical modelling and computer simulation Getting an overview of numerical methods for solving algebraic, differential and differential-algebraic equations Developing computer models for small problems and investigating benefits and limitations of the models and their simulation 			
Content:	 Presentation of numbers in a computer: integers and floating point variables; roundoff errors Loss of significant digits, error propagation Interpolation: Lagrange polynomials and splines Differentials and differential equations by finite differences, transformation to iterative algebraic equations Iterative solution of linear systems Iterative solution of non-linear systems, Newton's Method, Newton-Raphson Integration schemes for ordinary and partial differential equations: forward and backward Euler, velocity Verlet, Runge-Kutta, implicit vs. explicit schemes Stability, accuracy and consistency of integration schemes Fixed-point iteration Numerical solution of differential equations: forward and backward Euler, Runge-Kutta, difference equations, stability 			

	Numerical Solution in real-time systems					
	Numerical Computation of Eigenvalues					
Assessment:	Graded: Examination					
Forms of media:	Whiteboard, Beamer, Computer for numerical exercises					
Literature:	 Forman S. Acton (2005) Real Computing Made Real – Preventing Errors in Scientific and Engineering Calculations. Mineola. Dover Publications. Richard Burden and Douglas Faires (2011) Numerical Analysis. 9th international edition. Brooks/Cole. Parviz Moin (2010) Fundamentals of Engineering Numerical Analysis. 2nd edition. Cambridge. Cambridge University Press. Cleve Moler, Numerical Computation with Matlab, free pdf from https://de.mmathworks.com/moler/chapters.html Teukolsky, Press: Numerical Recipes, Princeton University Press 					

3302 General Management

Module name:	General Management	
Module code:	3302	
Semester:	Summerterm	
Module coordinator:	Prof. DrIng. Dirk Untiedt	
Lecturer:	Prof. DrIng. Dirk Untiedt	
Language:	English	
Place in curriculum:	Common Core Subject	
Timetabled hours:	Lectures:	2 HPW
	Practical Training:	1 HPW
Workload:	45 h attendance	
	65 h preparation and review	
	40 h report preparation	
Credits:	5	
Recommended prerequisites:	None	
Module objectives:	In addition to the corporate management r management functions for any kind of corr distinguished with respect to general Mana	npany can be
	Marketing Management	
	Finance Management and	
	Production management	
	Students know the main tools, methods are of general management. They have the alternatively. They are able to formulat and implementation plans on all strategy less specific contexts.	oility to use e strategies
Content:	Fundamentals of General Management	
	Strategy Formulation	
	Operations	
	Finance and Controlling	
	Human Resource Management	
	Change Management	
	Marketing and Sales	
Assessment:	Attestation: Written reports and oral prese	ntations
Forms of media:	Whiteboard, PowerPoint, Business Simula	tion Software

Literature:	Lecture notes
	David Hunger; Thomas L. Wheelen: Essentials of Strategic Management. Pearson Education, Inc. Publishing as Prentice Hall, 5 th international edition 2010.

3600 Principles of Bionics

Module name:	Principles of Bionics	
Module code:	3600	
Semester:	Summerterm	
Module coordinator:	Prof. Dr. William Megill	
Lecturer:	Prof. Dr. William Megill	
Language:	English	
Place in curriculum:	Common Core Subject	
Timetabled hours:	Lectures: Practical Training:	2 HPW 1 HPW
Workload:	45 h attendance 75 h Lab reports and review 30 h exam preparation	
Credits:	5	
Prerequisites:		
Module objectives:	Students know the underlying principles of the deviced field of bionics / biomimetics, including recent VDI guidelines that shape the field in Germany. They the difference between biomimetic engineering de marketing storytelling. They know the steps in a terest development process. They understand the import communication and interdisciplinary collaboration success of design projects. They are able to make tools to identify a customer's requirements, and of tools to develop new ideas and potentials. At the ecourse, the students should be able to apply biomic design rules to development projects. Students have internalised an inventory of biologic studies (archetypes) which are the basis for mode biomimetic design. They will have acquired knowled techniques to understand and classify movement processes in biology so that these can be transfer technical context.	can tell sign and echnical tance of in the e use of other end of the imetic cal case rn edge and
Content:	Brief history of bionics/biomimetics What's in a word - bionics/biomimetics/bioinspiration finding a title for an interdisciplinary field. Mythbusters, bionics and philosophy: What is bion and what isn't; Convergent evolution in biology and technology; bionics as a marketing tool; Nature isr best; contrasts in philosophies & approaches of engineering and biology; communication in	nimetic, d

	interdisciplinarity.
	Biomimetic Product Design: Review of engineering design; bionics and the German norm: VDI 2220; Creativity tools including TRIZ/BioTRIZ, ontologies;
	Case Studies in Bionics of Locomotion: Biomimetic principles will be developed starting from animal examples and leading to novel machine implementations. Locomotion in fluids; drag, propulsion and lift; efficient & tuned body design; fluid-structure interaction; scaling principles; great flight diagram; terrestrial locomotion; importance of resonance and timing; Alongside the technical applications and animal examples, the underlying physics will be taught, specifically mechanics, fluid dynamics and energy use. Traditional wheel-based robots will be contrasted against biological models.
Assessment:	Written examination and Laboratory reports
Forms of media:	Whiteboard, PowerPoint, Projector, Laboratories
Literature:	Course materials from the lecturer
	Exercises from the lecturer
	Journals:
	 Bioinspiration & Biomimetics Journal of Bionic Engineering Journal of experimental Biology
	Further Reading:
	BK Ahlborn – Zoological Physics. Springer.
	 Y. Bar-Cohen Biomimetics Biologically Inspired Technologies. CRC Press, 2006, ISBN: 978-0-8493-3163-3

3601 Bionics of Sensing and Materials

Module name:	Bionics of Sensing and Materials
Module code:	3601
Semester:	Winterterm
Module coordinator:	Prof. Dr. Lily Chambers
Lecturer:	Prof. Dr. Lily Chambers
Language:	English
Place in curriculum:	Common Core Subject
Timetabled hours:	Lectures: 2 HPW Practical Training: 1 HPW
Workload:	45 h attendance
	75 h Lab reports and review
	30 h exam preparation
Credits:	5
Recommended prerequisites:	Biology/ Chemistry/ Materials Chemistry.
Module objectives:	Biological materials and sensors provide solutions to advance robotics and their interactions with their environment. The module objectives will be to understand natural sensory systems and their transduction pathways along with the material science and engineering of bio-inspired and bio-compatible applications for robotics. Critically
	appraise research advances in bio-inspired robotics and sensing systems including vision, haptics and flow sensing. Develop an advanced knowledge of soft and smart materials for bionics.
Content:	 Detailed biology of natural sensing systems; vision, hearing, touch (including distant touch), smell, taste, electrogenic, magnetic with a focus on their neural transduction pathways. Review state-of-the-art biomimetic sensing systems including flow sensors, haptics, optics. Introduction to biological materials and the key physical phenomena governing them for both plants and animals, including proteins, polysaccharides, ceramics and fibrous composites. Introduction to biological materials and systems for the design of soft and smart robotic structures and actuation. In a series of laboratories, practical training will be

received to build and test bionic mimics of three key sensing systems in the field of Vision, Audition and Flow sensing
Graded: Written examination and Laboratory reports
Whiteboard, PowerPoint, Projector, Laboratories
 F. G. Barth, J. A. C. Humphrey, T. W. Secomb (Eds.): Sensors and Sensing in Biology and Engineering. Springer Berlin, 2003. ISBN: 978-3-211-83771-9 Y. Bar-Cohen: Biomimetics Biologically Inspired Technologies. CRC Press, 2006, ISBN: 978-0-8493-3163-3 JFV Vincent (2012) Structural Biomaterials, 3rd Ed. Prince- ton UP. Course materials from the lecturer Exercises from the lecturer Further Reading: Journals Soft robotics Journal Bioinspiration and Biomimetics

Focus Field Robotic

3402 Principles of Software Development

Module name:	Principles of Software Development
Module code:	3402
Semester:	Summerterm
Module coordinator:	Prof. Dr. Ronny Hartanto
Lecturer:	Prof. Dr. Ronny Hartanto
Language:	English
Place in curriculum:	Core Subject
Timetabled hours:	Lectures: 2 HPW
	Practical Training: 1 HPW
Workload:	45 h attendance
	45 h preparation and review
	30 h homework and lab review
	30 h exam preparation
Credits:	5
Recommended	Good knowledge in programming (C++, Java, C, etc.)
prerequisites:	Basic knowledge in object-oriented programming (OOP)
Module objectives:	Students are familiar with different software process models.
	Students are able to classify different aspects of software- related process activities and can recognize the importance of the roles of the parties involved into these processes.
	Students are able to derive the software specifications from the requirements of a software project.
	Students are familiar with different UML diagrams
	Students can develop system model of a software project using graphical modelling (UML)
	Students can develop test procedures for software projects.
	Students can develop software using reusable software development technique, e.g. using open source libraries
	Students can apply some of design pattern techniques
	Students can use software repository system for daily

	purpose, e.g. revision system for a software project
Content:	Software processes
	Software process models (Waterfall model, incremental model, reuse-oriented software design)
	Process activities (Specification, Design and implementation, Verification, Software evolution)
	Coping with change
	Agile Development
	Requirements Engineering
	Functional and non-functional requirements
	Requirements specification
	Requirements management
	Design and Implementation
	Design Patterns
	Reusable Software Development Technique
	System Modelling
	Graphical Modelling perspectives (external, interaction, structural and behavioural)
	Unified Modelling Language / UML diagrams (activity, use case, sequence, class and state)
	Software testing
	Software development tools
Assessment:	Graded: Continuous assessment (10%: project and quizzes) and written examination (90%)
Forms of media:	Whiteboard, PowerPoint, Projector, PC-Pool
Literature:	I. Somerville, "Software Engineering". 10 th edition. Pearson 2016
	J. Rumbaugh, I. Jacobson, G. Booch, "The Unified Modeling Language Reference Manual", 2 nd edition. Addison-Wesley 2005
	S. McConnell, "Code Complete". 2 nd edition. Microsoft Press Redmond, WA, USA 2004.
	E. Gamma, R. Helm, R. Johnson, J. Vlissides, "Design

Patterns: Elements of Reusable Object-Oriented Software". Addison-Wesley 1995

B. Stroustrup, "The C++ Programming Language". 4th edition. Addison-Wesley 2013.

H. Partsch, "Requirements Engineering systematisch". Springer 2010

J. A. Whittaker, "How to break software: a practical guide to testing". Addison-Wesley 2002

3603 Human Machine Interaction

Module name:	Human Machine Interaction	
Module code:	3603	
Semester:	Summerterm	
Module coordinator:	Prof. DrIng. Ivan Volosyak	
Lecturer:	Prof. DrIng. Ivan Volosyak	
Language:	English	
Place in curriculum:	Focus Field Subject	
Timetabled hours:	Lectures: 2	HPW
	Practical Training: 1	HPW
Workload:	45 h attendance	
	65 h preparation and review	
	40 h exam preparation	
Credits:	5	
Prerequisites:		
Module objectives:	The field of Human-Computer Interaction (HCI) is ray growing area of human-machine interaction. This hig multidisciplinary study course brings together researce topics from: Interaction Design, Human-Robot Interactional Intelligence, Psychology, Robotics and manifields. The main goal of HCI is to enable machines to successfully interact with humans.	thly ch ction, y other
	The students understand the fundamentals of underly technologies, as they relate to human-computer interaction, man-machine coupling, and ethics. The electrical potentials in the human brain, which can be detected with non-invasive and invasive methods, mused for the establishing the connection between the human brain and the computer.	e ay be
	The students can derive, from first principles, real architectures for modern Brain-Computer Interfaces They are able to design and build, using specialized communications structures and sensors, systems for among other things, the support of physically handical	•,

	individuals (such as gesture recognition, speech processing etc.). They appreciate the safety and social aspects of modern HCI and BCI technologies and can name the relevant risks
Content:	Introduction to Human-Machine Interaction
	Human body as electrical system
	The concept of a Brain-Computer Interface
	Modern speech processing
	Gesture recognition
	Virtual and Augmented Reality
	Data collection with non-invasive methods
	Fundamentals of EEG
	SSVEP, P300 and ERD/ERS based BCI
	Applications for communication with and control of external machines
Assessment:	Attestation: Written examination
Forms of media:	Whiteboard, PowerPoint, Projector, Demonstrations in the lecture
Literature:	Ian McLoughlin, Applied Speech And Audio Processing: With Matlab Examples, Cambridge University Press, 2009, 00/YGK 2
	J. R. Parker, Algorithms for image processing and computer vision, 2011, Wiley, 00/TVV 51
	Jonathan R. Wolpaw, Elizabeth W. Wolpaw Brain- Computer Interfaces – Principles and Practice, Oxford University Press, 2012, 00/TVU33
	Further reading:
	Siuly Siuly, Yan Li, Yanchung Zhang EEG Signal Analysis and Classification, Springer, 2016, 00/WBK105
	Rajesh P. N. Rao Brain-Computer Interfacing, Cambridge University Press, 2013, 00/WBK78
	Course materials from the lecturer

3606 Physics of Agent Behaviour

Module name	Physics of Agent Behaviour
Module code	3606
Semester	Summerterm
Module coordinator	Prof. Dr. William Megill
Lecturers	Prof. Dr. William Megill
	Prof. Dr. Alexander Struck
Language	English
Timetabled hours	Lectures: 2 SWS
	Practical Training: 1 SWS
Workload	45 h Attendance
	65 h Self-study
	40 h Exam preparation
Credits	5
Recommended prerequisites:	
Module objectives	Students are familiar with fundamentals of kinematics, kinetics, agents and mobile robots.
	 Students are familiar with different locomotion concepts for ground-based robots (wheeled and un-wheeled), aerial robots and naval systems.
	 Students are able to derive the kinematic model of a mobile agent and understand the physics of agent interaction.
	Students understand the fundamentals of ethology, agent behaviour and social robotics. They understand how these fields are studied, what the central tenets are, and what the limitations are. They appreciate the challenges of applying biomimetic solutions to real technical problems.
	Students appreciate the complexity of multi-agent interactions and the development of social behaviour in animals, humans and robots. They understand self-organisation as an extension of self-assembly, and appreciate its opportunities, challenges and limits.
Content	Equations of motion for robotics - kinematics of wheeled, legged, swimming and flying agents (robots or animals); Terrestrial locomotion; importance of resonance and timing; wheels, slip and steering. Locomotion in fluids: drag, propulsion and lift; efficient & tuned body design; fluid-structure interaction; scaling principles; great flight diagramme; Introduction to the concept of an "agent" in robotics

	context. Principles of ethology as relevant to bioinspired robotics.
	Multi-agent interaction in robots and systems; self-assembly; rules and algorithms. Animal & robotic social systems; collaborative working; simple agent complex behaviour. Systems of agents: top-down, bottom-up or wasp waist systems control. Thermodynamics & gas laws in agent (animal or robot) behaviour.
Assessment	Graded: Written examination, lab reports
Forms of media	Whiteboard, PowerPoint, projector, laboratories
Literature	BK Ahlborn – Zoological Physics. Springer.
	 Y. Bar-Cohen Biomimetics Biologically Inspired Technologies. CRC Press, 2006, ISBN: 978-0-8493-3163-3
	 JCh. Zufferey Bio-inspired Flying Robots. CRC Press, 2008. ISBN: 978-2-940222-19-3
	Siegwart R, Nourbakhsh IR, Scaramuzza D. Introduction to autonomous mobile robotics. MIT Press, 2011. ISBN: 978-0-262-01535-6

3407 Computational Multibody Dynamics

Module name:	Computational Multibody Dynamics	
Module code:	3407	
Semester:	Summerterm	
Module coordinator:	Prof. Dr. Thorsten Brandt	
Lecturer:	Prof. Dr. Thorsten Brandt	
Language:	English	
Place in curriculum:	Focus Field Subject	
Timetabled hours:	Lectures: 1	HPW
	Practical Training: 2	HPW
Workload:	45 h attendance	
	75 h preparation and review	
	30 h exam preparation	
Credits:	5	
Recommended prerequisites:	Fundamentals of Mechanics and Engineering Mather at the undergraduate level as wells as fundamental programming skills	matics
Module objectives:	After successfully finishing the module, students are familiar with the fundamentals of multibody dynamics. They are able to apply concepts from linear algebra such as vectors and matrices to mechanical systems. The kinematics of technical joints such as revolute joints can be modeled by algebraic constraints by the student. The student is also able to model the dynamics of constraint multibody dynamic systems. Furthermore, the student is able to develop basic programming code and to simulate multibody dynamic systems and to interpret the simulation results.	
Content:	The course focuses on the modelling and numerical simulation of dynamic multibody systems.	
	Main subjects are:	
	Definitions: bodies, joints, and coordinates	
	Kinematics: rotation, translation	
	Kinematic constraints	
	Dynamics	
	Development of multibody dynamics simulation code	
	Application of multibody simulation software	

	Analysis of multibody dynamic systems
Assessment:	Graded: Written or oral examination
Forms of media:	Whiteboard, PowerPoint, Projector
Literature:	P. E. Nikravesh: Planar Multibody Dynamics - Formulation, Programming, and Application, CRC press,2008
	Lecture Notes

3602 Bioinspired Machine Learning

Module name:	Bioinspired Machine Learning
Module code:	3602
Semester:	Winterterm
Module coordinator:	Prof. Dr. Matthias Krauledat
Lecturer:	Prof. Dr. Matthias Krauledat
Language:	English
Place in curriculum:	Focus Field Subject
Timetabled hours:	Lectures: 2 HPW
	Exercises: 1 HPW
Workload:	45 h attendance
	75 h preparation and review
	30 h exam preparation
Credits:	5
Prerequisites:	Linear Algebra (Eigenvectors, Eigenvalues, Symmetric Matrices, Positive Definiteness, Matrix factorizations, Orthogonality, SVD, Projections, Linear Transformations)
	Probability Theory (random variables, Expected Value, Variance, Probability Distributions such as Normal Distribution, Statistical testing, Significance levels)
Module objectives:	After completion of the course the students have a general overview of the Machine Learning field. They know details about implementations of various classification and regression methods and understand the mathematical background of the corresponding algorithms.
	Students are able to select suitable methods to given problems, apply algorithms (based on the respective application fields) and evaluate their performance according to different cost functions.
Content:	Introduction to Machine Learning
	Classification, Regression, Supervised Learning, Unsupervised Learning, Reinforcement learning
	Bayesian Decision Theory

	Losses, Risks, Discriminant Functions
	Multivariate Methods
	Multivariate Normal Distribution, Classification, Regression
	Dimensionality Reduction
	PCA, Multidimensional Scaling, LDA
	Clustering
	Mixture Densities, k-means, EM algorithm, Hierarchical Clustering
	Multilayer Perceptrons / Neural Networks
	Perceptrons, Training, Backpropagation, Recurrent Neural Networks, Deep Learning
	Kernel Machines
	Optimal Hyperplanes, Soft Margin, SVM, Kernel trick
	Combining Multiple Learners
	Voting, Bagging, Boosting, Mixture of Experts
	Design and Analysis of Machine Learning Experiments
	Cross Validation, Resampling Methods, Guidelines for ML experiments, Measuring Classifier Performance, Comparing two or more Classification algorithms
	Applications: Object Recognition, Image Classification and others
Assessment:	Graded: Written examination
Forms of media:	Whiteboard, PowerPoint, Projector, Programming lab exercises
Literature:	Alpaydin: Introduction to Machine Learning, 2 nd edition, ISBN 978-0262012430, The MIT Press, 2010
	Duda, Hart, Stork: Pattern Classification, 2 nd edition, ISBN 978-0471056690, Wiley, 2001
	Bishop: Pattern Recognition and Machine Learning, ISBN 978-0387310732, Springer, 2006
	Schölkopf, Smola: Learning with Kernels, ISBN 978-0262194754, The MIT Press, 2002

Course materials from the lecturer

Exercises from the lecturer

Further Reading:

Ertel: Introduction to Artificial Intelligence, ISBN 978-0857292988, Springer, 2011

Russell, Norvig: Artificial Intelligence – a modern approach, 3rd edition, ISBN 978-0132071482, Pearson, 2010

3604 Autonomous Robotics

Module name:	Autonomous Robotics	
Module code:	3604	
Semester:	Winterterm	
Module coordinator:	Prof. Dr. Ronny Hartanto	
Lecturer:	Prof. Dr. Ronny Hartanto	
Language:	English	
Place in curriculum:	Focus Field Subject	
Timetabled hours:	Lectures:	2 HPW
	Practical Training:	1 HPW
Workload:	45 h attendance	
	45 h preparation and review	
	30 h homework and lab review	
	30 h exam preparation	
Credits:	5	
Recommended prerequisites:	Linear Algebra (Symmetric Matrices, Matrix factor Orthogonality, SVD, Projections, Linear Transform	•
	Probability Theory (random variables, Expected Variance, Probability Distributions such as Norma Distribution, Statistical testing, Significance levels	al
	Mechanics background at undergraduate level	
	Control background at undergraduate level	
	Programming knowledge (C++, C, python)	
Module objectives:	Students are familiar with different concepts of more robots.	obile
	Students are familiar with different locomotion corground-based robots (wheeled and un-wheeled), robots and naval systems.	•
	Students are able to derive the kinematic model of mobile robot.	of a
	Students are familiar with various sensors and ac used in the mobile robotics.	tuators
	Students know the principle of self-localization an mapping.	d
	Students are familiar with various algorithms used mobile robotics.	d in

	Students are familiar with communication middleware techniques, such as RPC, Publish/Subscribe
	Students are familiar with robotics middleware especially in ROS (Robot Operating System)
	Students can run and write simple program using ROS package for controlling a mobile robot
Content:	Concept of mobile robots,
	Locomotion,
	Kinematics,
	Sensors,
	Perception,
	Actuators,
	Localization,
	Mapping,
	Control architectures,
	Planning and navigation,
	Communication Middleware,
	Robotics Middleware.
Assessment:	Graded: Continuous assessment (10%: homework and quizzes) and written or oral examination (90%)
Forms of media:	Whiteboard, PowerPoint, Projector
Literature:	R. Siegwart, I.R. Nourbakhsh, D. Scaramuzza: "Introduction to Autonomous Mobile Robots", second edition, MIT Press, 2011.
	B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: "Robotics: Modelling, Planning and Control". Springer, 2009.
	A.S. Tanenbaum, M. van Stehen: "Distributed Systems: Principles and Paradigms". Prentice Hall, 2002.
	W. Newman: "A Systematic Approach to Learning Robot Programming with ROS", 1 st edition. Chapman and Hall, 2017.

3605 Evolutionary Algorithms

Module name:	Evolutionary Algorithms		
Module code:	3605		
Semester:	Winterterm		
Module coordinator:	Prof. Dr. Achim Kehrein		
Lecturer:	Prof. Dr. Achim Kehrein		
Language:	English		
Place in curriculum:	Focus Field Subject		
Timetabled hours:	Lectures:	2 HPW	
	Practical Training:	1 HPW	
Workload:	45 h attendance		
	45 h preparation and review		
	30 h homework and lab review		
	30 h exam preparation		
Credits:	5		
Prerequisites:	Programming knowledge (C++, C, Python, or N	//ATLAB)	
	Calculus: optimization problems of one and servariables	veral	
	Descriptive statistics: mean, variance, standard histograms	statistics: mean, variance, standard deviation,	
	Probability theory: random variables; expected variance; discrete and continuous probability d in particular normal distribution		
Module objectives:	Students learn the basic principles of biologica and how to interpret and apply them as heurist general problem solving.		
Module objectives:	and how to interpret and apply them as heurist		

	T
	computer simulations to solve problems.
Content:	Distinction between optimization problems and constraint satisfaction problems
	Building blocks of evolutionary algorithms: representation of solution candidates, selection of parents, reproduction: recombination and mutation, selection for next generation
	Phenotypic and genotypic representation of individuals
	Binary representation: simple conversion and Gray coding; bit-flip mutation; n-point crossover
	Population dynamics: effect of parameter settings
	Importance of randomness for evolutionary algorithms; technical aspects of pseudo-random number generation and statistical evaluation of simulation results
	Case studies
Assessment:	Graded: Written examination
Forms of media:	Whiteboard, PowerPoint, Projector, demonstration in the lecture
Literature:	K.A. de Jong Evolutionary Computation – A Unified Approach. MIT Press, 2006. ISBN: 978-0-262-04194-2
	Z. Michalewicz, D.B. Fogel How to Solve It: Modern Heuristics. 2nd edition. Springer. 2004. ISBN: 978-3-540-22494-5
	M. Mitchell An Introduction to Genetic Algorithms (Complex Adaptive Systems). MIT Press, 1998. ISBN: 978-0-262-63185-3
	D. Dasgupta, Z. Michalewicz (eds.) Evolutionary Algorithms in Engineering Applications. Springer, 1995. ISBN: 978-3-540-62021-1
	R.L. Haupt, D.H. Werner Genetic Algorithms in Electromagnetics. Wiley, 2007. ISBN: 978-0-471-48889-7
	R.L. Haupt, S.E. Haupt Practical Genetic Algorithms. Wiley, 2004. ISBN: 978-0-471-45565-3
	S. Nolfi, D. Floreano Evolutionary Robotics: The Biology, Intelligence and Technology of Self-Organizing Machines. MIT Press, 2004. ISBN: 978-0-262-64056-5
	S.C. Stearns, R.F. Hoekstra
·	

Evolution. 2nd edition. Oxford University Press. 2005. ISBN: 978-0-199-25563-4

Focus Field Materials

3608 Sustainability

Module name:	Sustainability	
Module code:	3608	
Semester:	Winterterm	
Module coordinator:	Prof. DrIng. Raimund Sicking	
Lecturer:	Prof. DrIng. Raimund Sicking	
Language:	English	
Place in curriculum:	Core Subject	
Timetabled hours:	Lecture: 2 SWS Exercises: 1 SWS	
Workload:	45 h attendance 30 h preparation of presentation(s) 75 h self study and exam preparation	
Credits:	5	
Recommended prerequisites:	none	
Module objectives:	After completing the course, students understand the general interdependencies between human beings, technology and nature. can distinguish between different dimensions of globalization. are aware of global environmental changes, such as climate change. have fundamental knowledge about sustainability concepts, strategies and areas of activity. understand concept and principle of a circular economy. know EU-directives and selected national regulations concerning circular economy and waste know options for product and product integrated environment protection recognize concept and structure of different life cycle assessments. are able to apply methods for sustainable technology design. Know methods for pollution-free environment	
Content:	 Theories of nature, society and technology Economic, political, cultural and ecological dimension of globalization Global warming, carbon footprint, decarbonization 	

	 Weak and strong sustainability The factor 10 approach Concept of dematerialization open lool low carbon restoration Concept and principle of a circular economy Basics of product and product-integrated environmental protection Technology assessment Social, ecological and classic life cycle assessment (LCA) Low impact materials, renewable resources, energy efficiency, design for reuse and recycling Handling harmfull substances Methods for pollution-free environment
Assessment:	Graded: Examination + Group Presentation
Forms of media:	Whiteboard, Power Point, Projector
Literature:	Matthias Bank: Basiswissen Umwelttechnik: Wasser, Luft, Abfall, Lärm und Umweltrecht Karl Schwister: Taschenbuch der Umwelttechnik Ernst Worell, Markus A. Reuter (Ed.): Handbook of Recycling Iris Pufé Nachhaltigkeit Course materials from the lecturer Exercises from the lecturer Lecture notes compiled by class (open source)

3609 Advanced Chemistry

Module name:	Advanced Chemistry	
Module code:	3609	
Semester:	Summerterm	
Module coordinator:	Prof. Dr. Neil Shirtcliffe	
Lecturer:	Prof. Dr. Neil Shirtcliffe	
Language:	English	
Place in curriculum:	Focus Field Subject	
Timetabled hours:	Lectures:	2 SWS
	Practical Training:	1 SWS
Workload:	45 h attendance	
	75 h self study	
	30 h exam preparation	
Credits:	5	
Recommended prerequisites:	Fundamentals of Chemistry	
Module objectives:	After completing the course, students w	vill
	be able to describe mechanisms of che between organic compounds.	mical reactions
	Be able to identify stereoisomers	
	have a sound understanding of Redox of electrochemistry, photochemistry and ra	•
	be able to characterize chemical reaction thermodynamic assessment.	ons by
	understand a phase diagram, e.g Pourb	paix
	be able to describe different aspects in materials fabrication and characterization	
Content:	Chemical structure and functionality of lartificial polymers and gels	biomaterials,
	Reaction mechanisms	
	Principles of polymerization	
	Standard reactions in biomaterials	
	Redox-potential, Nernst-equation, elect (Zeta potential), Redox reactions in biol electrochemistry	•
	Reaction enthalpy and entropy, Gibbs f	ree enthalpy,

	Equilibrium constant, reaction order, rate constant, catalysis
	Macromolecular and Supramolecular chemistry
	Phase boundaries, solubility
	Nanochemistry and structured materials characterization and aspects of nanotechnology.
Assessment:	Graded: Written examination
Forms of media:	Whiteboard, Power Point, projector, chemical lab equipment
Literature:	Lecture notes
	Solomons, Fryhle, Snyder: Organic Chemistry, 12 th edition, Wiley 2017
	Cowie, Arrighi: Polymers: Chemistry and Physics of Modern Materials, 3 rd edition, CRC Press 2007
	Geoffrey A Ozin, André Arsenault, Ludovico Cademartiri: Nanochemistry: A Chemical Approach to Nanomaterials

3611 Bioplastics

Module name:	Bioplastics	
Module code:	3611	
Semester:	Summerterm	
Module coordinator:	Prof. Dr. Christoph Heß	
Lecturer:	Prof. Dr. Christoph Heß	
Language:	English	
Place in curriculum:	Focus Field Subject	
Timetabled hours:	Lectures:	2 SWS
	Practical Training:	1 SWS
Workload:	45 h attendance	
	75 h self study	
	30 h exam preparation	
Credits:	5	
Recommended prerequisites:	Fundamentals of Chemistry, Non-metallic M Processing of synthetic Materials / Polymer	•
Module objectives:	After completing the course, students	
	know the chemical structure of the most implication biobased and biodegradable polymers and	
	understand the general principles of compo processing of thermoplastic, thermosetting a materials.	_
	are able to select the most appropriate biop and compounding/processing regime for a g	
	are aware of the difference between biodeg oxodegradable and compostable products a apply standard EN 13432 for testing the bio and compostability of materials correctly.	and are able to
	know the difference between the share of bit and the share of biobased raw material in a They are able to apply ASTM 6866 for the biobased carbon in a material with the help dating (14C).	bioplastic. letermination of
	have a sound understanding about the diffe between terrestrial and marine degradation and are able to professionally contribute to discussion on microplastic in the sea resp. r	of materials a scientific

Content:	Chemical structure and synthesis of biopolymers (e.g.
Content.	starch, cellulose, PLA, PHA, PBAT)
	Compounding of bioplastics
	Principle of twin screw extrusion (machine set-up, processing parameters, screw design, melting, mixing, metering)
	Extruder periphery (feeder systems, cooling, venting, pelletizing)
	Biopolymer blends and compounds, purpose of additives, fillers
	Thermodynamics of compounding
	Processing of bioplastics and applications
	Injection moulding of (fiber reinforced) thermoplastics and thermosets; shaped articles
	Blown film extrusion; flexible film
	Sheet film extrusion, thermoforming
	Pultrusion, resin infusion and compression moulding of fiber reinforced bioplastics (composites)
	Thermodynamics of processsing
	Characterization of bioplastics
	Share of biobased carbon resp. biobased raw material, ASTM 6866, ¹⁴ C-radiocarbon dating, carbon cycle
	Drop-in bioplastics (Bio-PE, Bio-PET)
	End-of-life options for bioplastics, biodegradability, compostability, EN 13432
	Marine degradation, microplastic
Assessment:	Attestation: Written examination
Forms of media:	Whiteboard, Power Point, Projector, Lab scale polymer processing equipment
Literature:	Lecture notes
	Peacock, Calhoun: Polymer Chemistry, Hanser 2006
	Agassant, Avenas et al: Polymer Processing, Hanser 2017

Endres, Siebert-Raths: Engineering Biopolymers, Hanser 2011
Pötsch, Michaeli: Injection Molding – An Introduction, Hanser 2008

3613 Biomimetic Engineering Materials

Module name:	Biomimetic Engineering Materials
Module code:	3613
Semester:	Summerterm
Module coordinator:	Prof. Dr. Amir Fahmi
Lecturer:	Prof. Dr. Amir Fahmi
Language:	English
Place in curriculum:	Focus Field Subject
Timetabled hours:	Lectures: 2 HPW
	Practical Traning: 1 HPW
Workload:	45 h attendance
	75 h preparation and review
	30 h exam preparation
Credits:	5
Recommended prerequisites:	Advanced Materials, Nanomaterials and Materials inspired by nature
Module objectives:	The course objectives is to demonstrate the structure- property-process relationship of biomimetic materials engineering prospective based on principles governing the design of biological materials in broad spectrum of applications.
	A large variety of mimic natural materials with outstanding collective physical, physiochemical, surface and mechanical properties intensively considered.
	The course is structured in three comprehensive topics:
	Principle of engineering in biological materials,
	Design and fabrication basic building blocks mimic biological materials
	Future developments in biomimetic engineered materials
	Learning outcome
	After completing the course the students will be able to:
	To design properties of active materials based on proved concept from nature
	To understand the structure, properties, and performance at different scales relative to the hierarchical organization

	of the biomimetic structured materials.
	To fabricate different types of biomimetic structured materials at different dimensions and length scale
	To define process and methodologies to design and fabricate biomimetic nanomaterials towards intelligence in morphing structures.
	To integrate bioinspired functional components within interdisciplinary design work and devices
	To understand both applications the limitation to mimic the nature in term of design new or improve new functional structured materials
Content:	The course presents comprehensive overview in wide range of functional biomimetic engineered materials and their composition, structure, and properties.
	It defines methodologies and pathway in the molecular designs of biomineralisation
	The primary theme in course is bio-inspired structures via self-assembly process and mechanism at different dimensions and length scales.
	it demonstrates current approaches to engineer biomimetic materials such as self-healing, self-cleaning and molecular imprinting, followed by a detailed evaluation of their structure-property relationships with focus on collective and adaptive properties
	It describes process and mechanism of nanomaterials formation in mesoscopic arrays toward transformations across extended length macro scales as key challenge in the design of advanced functional components.
	The course demonstrates characterisation techniques for wide range of bio-inspired structures and properties towards functions.
Assessment:	Graded: Final written examination only
Forms of media:	Whiteboard, PowerPoint, Projector
Literature:	Peter Fratzl, John W.C. Dunlop, Richard Weinkamer "Materials Design Inspired by Nature: Function Through Inner Architecture"
	Knecht, Marc R.; Walsh, Tiffany R. "Bio-inspired Nanotechnology"
	Wolfgang Pompe, Gerhard Rodel, Hans-Jurgen Weiss, Michael Mertig "Bio-nanomaterials - Designing Materials Inspired By Nature"

Tao Deng "Bioinspired Engineering of Thermal Materials"
Matteo Santin and Gary Phillips "Biomimetic, Bioresponsive, and Bioactive Materials"
Zhenhai Xia "Biomimetic Principles and Design of Advanced Engineering Materials"

3403 Materials Selection and Simulation

Module name:	Materials Selection and Simulation	
Module code:	3403	
Semester:	Summerterm	
Module coordinator:	Prof. DrIng. Henning Schütte	
Lecturer:	Prof. DrIng. Henning Schütte	
Language:	English	
Place in curriculum:	Focus Field Subject	
Timetabled hours:	Lectures:	2 HPW
	Practical Training:	1 HPW
Workload:	45 h attendance	
	75 h preparation and review	
	30 h exam preparation	
Credits:	5	
Recommended prerequisites:	Introductory courses in Material Science, Design a Mechanics	and
Module objectives:	After completing the course the students are able	to:
	classify materials according to specific application according to specific design codes	s, e.g.
	understand tools and keys for proper selection of materials for specific applications	
	detect limits of materials and present proper alter selection	native
	identify standard procedures and benchmarks for materials classification and selection	-
	apply basic materials property calculations	
	identify and apply proper simulation models and to especially FEM based analysis	ools,
Content:	General ideas of materials selection	
	Methods and procedures	
	Determination of requirements	
	Information sources and databases	
	Evaluation, validation and decision	
	Risk evaluation and control	
	Overview and application of modelling approache	es

	simulation methods, FEM based evaluation, risk and failure models Assessment
Assessment:	Graded: 100% continuous assessment
Forms of media:	Whiteboard, PowerPoint, Projector
Literature:	Lecture notes Michael Ashby: Materials Selection in Mechanical Design. Butterworth Heinemann; 4th revised edition 2010
	Huei-Huang Lee : Finite Element Simulations with ANSYS Workbench 17
	Guangming Zhang: Engineering Analysis with ANSYS Workbench 18

3610 Smart Materials and Surface Technology

Module name:	Smart Materials and Surface Technology
Module code:	3610
Semester:	Winterterm
Module coordinator:	Prof. Dr. Neil Shirtcliffe
Lecturer:	Prof. Dr. Neil Shirtcliffe
Language:	English
Place in curriculum:	Focus Field Subject
Timetabled hours:	Integrated Seminar and Practical training: 3 SWS
Workload:	45 h attendance
	75 h self study
	30 h exam preparation
Credits:	5
Recommended	Advanced Chemistry
prerequisites:	
Module objectives:	After completing the course, students will be able
	to carried out a small study into one of the areas and have engaged with studies on the others (depending upon student numbers)
	to understand some simple research topics related to the subject cluster
	To identify and verify the selection and limitation of smart materials and compartments
Content:	Chemical and biosensing using various methods
	such as antibody, QCM, electrochemistry,
	Spectroscopic
	Surface treatments using various methods
	Such as evaporation, plasma, hot wire, layer by
	layer
	Material formation using methods
	Such as sol-gel, supramolecular chemistry, crystal growth, phase separation
	Smart systems and hybrid materials for Transducers, Sensors, Piezoelectrics and actuators applications
	Designing smart, structured materials to control

	responsivity and improve device performance
	Electroactive and magneto rheological materials
	Shape memory materials (alloys, polymers,)
	Biomimetic smart materials
Assessment:	Graded: Viva voce, written report
Forms of media:	Whiteboard, Power Point, projector, chemical lab equipment
Literature:	Research papers
	Electrochemical Methods: Fundamentals and Applications by Allen J. Bard (Autor), Larry R. Faulkner (Autor)
	Supramolecular Chemistry (Oxford Chemistry Primers) by Paul D. Beer
	Gauenzi, P., Smart Structures, Wiley
	Gandhi, Thompson, Smart Materials and Structures, Springer
	Haghi and Zaikov Handbook of Research on Nanomaterials, Nanochemistry & Smart Materials, Nova Science Publishers Inc.

3612 Lightweight Materials and Joining

Module name:	Lightweight Materials and Joining	
Module code:	3612	
Semester:	Winterterm	
Module coordinator:	Prof. DrIng. Raimund Sicking	
Lecturer:	Prof. DrIng. Raimund Sicking	
Language:	English	
Place in curriculum:	Focus Field Subject	
Timetabled hours:	Lectures: 2 HPW Practical Training: 1 HPW Optional one excursion	
Workload:	45 h attendance 45 h preparation and reports 60 h self study and exam preparation	
Credits:	5	
Recommended prerequisites:	Basic courses in materials science and substance-to- substance joining technologies	
Module objectives:	 After completing the course the students will have knowledge to assess light metals, composites, high strength materials and other materials with regard to their suitability for light weight constructions will understand the principles of traditional engineering joining technologies used for different light and high strength materials 	
Content:	 Properties of lightweight and high strength materials like aluminium, magnesium, high strength steels, CFRP and others Material related design aspects for lightweight constructions Production and manufacturing of an exemplary lightweight material Welding, soldering and brazing of metals Glueing and bonding of plastics and composites Mechanical joining techniques (rivets, bolts, clinching) Stress concentrations, load transfer across joints, corrosion for selected examples Combined processing 	
Assessment:	Graded: Written examination	
, accounting	Claded. Witten oxamination	

Forms of media:	Whiteboard, PowerPoint
Literature:	Lecture notesCurrent literature
	F. C. Campbell Lightweight Materials
	 D. Faruk, J. Tjong, M. Sain (Ed.) Lightweight and sustainable materials for automotive applications
	 K. Srinivasan Composite Materials – Production, Properties, Testing and Applications
	C. B. Carter, M. G. Norton Ceramic Materials – Science and Engineering
	 M. F. Ashby, D. R. H. Jones: Engineering Materials 2 – An Introduction to Microstructures, Processing and Design, 3rd edition, 2006, ISBN-13 978-0-7506-6381-6
	S. Kalpakjian, S. R. Schmid Manufacturing – Engineering and Technology
	R. W. Messler Jr. Joining of Materials and Structures
	 AWS C3 Committee on Brazing and Soldering: Brazing Handbook, 5th edition, 2012, ISBN 978-0-87171-046-8, AWS

Final Semester

3303 Appled Research Project - ARP

Module name:	Applied Research Project - ARP
Module code:	3303
Semester:	Summerterm
Module coordinator:	Prof. Prof. Dr. Dirk Nissing Prof. Dr. Alexander Klein Prof. Dr. William Megill Prof. Dr. Ronny Hartanto
Lecturer:	Project dependent
Language:	English
Place in curriculum:	Core Subject
Timetabled hours:	none
Workload:	150 h
Credits:	5
Recommended prerequisites:	
Module objectives:	The students demonstrate their capability to work independently on an applied research subject in alignment with their course of study, meeting all topical and scientific requirements in a limited period of time. They have the ability to self-analyze and assess the results and make recommendations for improvements. They are able to organize their workflow in order to meet the demands of the problems formulated in their project, as well as to monitor progress and make necessary amendments. Additionally students are able to improve their documentation skills, thus documenting their approach and their results to meet the requirements of a scientific publication.
Content:	The project content depends on the chosen topic and is agreed upon with the supervisor. Documentation is granted by an adequately sized description of the topic/problem, the chosen approach, used methods and results.
Assessment:	Graded: Written documentation, research results, proceeded data and charts, prototypes, software code, blueprints where applicable.
Forms of media:	Raw data, slide deck, written documentation
Literature:	

3304 Master Thesis

Module name:	Master Thesis
Module code:	3304
Semester:	Summerterm
Module coordinator:	Prof. Prof. Dr. Dirk Nissing Prof. Dr. Alexander Klein Prof. Dr. William Megill Prof. Dr. Ronny Hartanto
Lecturer:	Project dependent
Language:	English
Place in curriculum:	Core Subject
Timetabled hours:	none
Workload:	660 h
Credits:	22
Recommended prerequisites:	At least 50 credit points in the respective courses. Successfully passed "Applied Research Project".
Module objectives:	The students demonstrate their capability to work independently on a scientific subject in alignment with their course of study, meeting all topical and scientific requirements in a limited period of time. Scientific methods and approaches are used in order to work on the subject and they have the ability to analyze and assess the results. They are able to organize their workflow in order to meet the demands of the problems formulated in their theses, as well as to monitor progress and make necessary amendments. Additionally students are able to improve their documentation skills, thus documenting their approach and their results to meet the requirements of a scientific publication.
Content:	The Thesis content depends on the chosen topic and is agreed upon with the supervisor. Documentation is granted by an adequately sized description of the topic/problem, the chosen approach, used methods and results.
Assessment:	Graded: Written thesis
Forms of media:	Written thesis
Literature:	

3305 Colloquium

3303 Conoquium	
Module name:	Colloquium
Module code:	3305
Semester:	Summerterm
Module coordinator:	Prof. Prof. Dr. Dirk Nissing
	Prof. Dr. Alexander Klein
	Prof. Dr. William Megill
	Prof. Dr. Ronny Hartanto
Lecturer:	Supervisor of the Master Thesis
Language:	English
Place in curriculum:	Core Subject
Timetabled hours:	none
Workload:	90 h
Credits:	3
Recommended prerequisites:	At least 87 credits
Module objectives:	The students are able to defend the results of the Master Thesis place their work in a context of scientific applications and present their results in a proper form for the audience. They motivate their approach and make estimations, how assumptions and simplifications may affect the validity of their results. Additionally, students are able to analyze questions concerning their thesis and results and answer them properly in the context of professional and extra-professional reference.
Content:	The content is aligned with the content of the Master Thesis, in addition methodological discussions.
Assessment:	Graded: Oral examination
Forms of media:	Whiteboard, PowerPoint, Projector, other relevant media
Forms of media: Literature:	Whiteboard, PowerPoint, Projector, other relevant media