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Awesome people in Engineering mechanics, ch. 9 
Leonhard Euler (1707-1783) was a Switch 
mathematician who is widely accepted in the tribal 
lore of the mathematicians for his work in number 
theory and complex algebra. However, he (for some 
unclear reason) also ended up inventing most of the 
beam theory along with the Bernuilli-Brothers while 
working in Sct. Petersburg. Thereby he has also 
earned immortality among engineers, who have 
named the theory for calculation of deflections in 
long and slender members after him. Furthermore, 
Euler was among the first to study linear buckling of 
beams. Though one could suspect that Euler mainly 
was interested in the indeed very fascinating 
bifurcation problems arising from the differential 
equations rather than developing engineering 
design tools, the obtained results are still used for 
engineering design calculations. His approach to 
elastic stability remained the only basis for 
understanding of structural instability until Warner 
T. Koiters work on geometric non-linearities and 
initial post-buckling behavior in the mid-20th 
century 
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9.1 Introduction 
Structures like beams, plates and shells may when subjected to compressive loads become 

unstable leading to buckling and possibly loss of load carrying ability leading to structural 

collapse. We will consider the simply supported end-loaded beam in Figure 9-2. If the beam is 

unstable, the equilibrium is not only fulfilled in the undeformed state, but also in a deformed 

configuration. Any small perturbation of the equilibrium state will then lead the structure to 

"snap" from the undeformed configuration to the deformed (since deformed states usually are 

of lower strain energy than undeformed). Instability of long and slender members like beam 

columns are of great practical importance, since loss of stability may occur for compressive 

stresses below the yield limit. Hence, stress and deformation based design as described in 

chapter 4, 6 and 8 will not be sufficient to ensure the structural integrity. 

The present analysis will be limited to linear elastic beams subjected solely to centric 
compressive loads and fulfilling the Bernoulli-Euler assumptions, see chapter 8.  
A typical example of a buckling of long and slender structures is thermal buckling of rail road 
tracks, see Figure 9-1, left.  
Buckling of beams with significant internal bending moments is slightly more complex than the 
present theory and beyond our present scope. Most design norms and guidelines offer ‘easy-to-
use’ design rules. However, the underlying theoretical approach is usually contained implicitly 
(i.e. well hidden). 
Finally, before proceeding to the analysis, it should be noted, that initial imperfections reduce 
the load carrying ability. Hence, the obtained formulas are only valid for beams which are 
initially straight containing no significant imperfections. 
 
 

 
Figure 9-1 Thermal buckling of railway tracks 
 

 
 

https://upload.wikimedia.org/wikipedia/commons/a/a0/Buckled_rails_on_the_Yarra_Valley_Railway.JPG
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9.2 The Euler load 
A simply supported beam subjected a compressive load will be considered, see Figure 9-2. The 

beam will be considered in the deformed state, and we will now consider for which loads the 

governing differential equation actually has a solution different from the trivial, i.e. undeformed 

configuration.  

 
Figure 9-2 Simply supported beam subjected to compressive loads Please note the alternative 
coordinate system applied for this derivation 
 
Considering Figure 9-2 B, the internal bending moment is given by 

𝑀(𝑥) = −𝑃𝑦 (9-1) 
in which P denotes the compressive load and y is the deflection as function of x. Rewriting M(x) 
in terms of u, we obtain 

𝐸𝐼
𝑑2𝑢

𝑑2𝑥
+ 𝑃𝑦 = 0  

→
𝑑2𝑢

𝑑2𝑥
+

𝑃

𝐸𝐼
𝑦 = 0  

(9-2) 

We have once again discover a second order homogenous differential equation (truly among the 
finest things in life). From mathematics, we know that this will have a solution on the form  

𝑦 = 𝐴 sin (√
𝑃

𝐸𝐼
𝑥) + 𝐵 cos (√

𝑃

𝐸𝐼
𝑥)  (9-3) 

(if you do not believe me, try differentiating twice in inserting the obtained expression in 
equation 9-2).  
For the shown boundary conditions, we have  

at x=0: y(0) → 𝐵 = 0 (9-4) 
Equivalently, we have 

at x=L: y(L)=0 → 0 = 𝐴 sin (√
𝑃

𝐸𝐼
𝐿) (9-5) 

Except for the trivial solution, A=0, this equation can only be fulfilled if  

sin (√
𝑃

𝐸𝐼
𝐿) = 0  (9-6) 

which is the case if  

√
𝑃

𝐸𝐼
𝐿 = 𝑛𝜋  (9-7) 

The lowest value of P, for which instability may occur is obtained by setting n=1. This value is 
called the critical load and is denoted Pcr (often also referred to using the term Euler load PE) and 
is on basis of the equation above by calculus obtained as 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝐿2   (9-8) 

This value of compressive load is not to be exceeded if the load carrying ability is not to be 
compromised.  
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9.3 Influence of boundary conditions: the Euler length 
The question is now how to adapt the obtained expression to boundary conditions different 
from the ones applied in the analysis above (simply supported). Solving the obtained 
differential equation for different boundary conditions, it turns out that the critical load can be 
written on the general form 

                                                                                 𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝐿𝐸
2  (9-9) 

in which LE is the Euler length. This can for the most common boundary conditions for practical 

purposes be obtained by looking it up in tables, see for example Table 1. 

Case  Boundary conditions  Euler length LE 

Simply supported 

  

   

 
1.0L 

Cantilever 
 

2L 

Simply supported cantilever 

 

0.699L 

Double cantilever 
 

0.5L 

Table 1 The Euler length for different boundary conditions 

The load a long and slender beam can carry, is highly dependent on imperfections in the initial 
state, see Figure 9-3. If the beam is slightly crooked before loaded, it will buckling by  deflecting 
along a curved equilibrium path after a limit point has been passed. Furthermore, non-centric 
loads causing a moment may also cause buckling, but these are usually accounted for by 
calculating deformations rather than a critical load causing bifurcation. These phenomena 
require further analysis which is beyond the scope of a basic strength of materials course1  

 
Figure 9-3 Load-displacement path for a. straight beam with small deflections and rotations, b. 
straight beam with small deflections and large rotations, c. imperfect beam with large 
deflections and rotations, primary unstable solutions, d. imperfect beam with large deflections 
and rotations, stable equilibrium path corresponding to buckling 

                                                           
1 Lecture notes about buckling from MIT Courseware available here, here and here 

https://ocw.mit.edu/courses/mechanical-engineering/2-080j-structural-mechanics-fall-2013/course-notes/MIT2_080JF13_Lecture9.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-080j-structural-mechanics-fall-2013/course-notes/MIT2_080JF13_Lecture10.pdf
https://ocw.mit.edu/courses/mechanical-engineering/2-080j-structural-mechanics-fall-2013/course-notes/MIT2_080JF13_Lecture11.pdf
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Calculated example 9A: Design of rectangular beam against compressive loads 

 
A rectangular beam with h=20 mm, b=10 mm and L=0.5 m is made of steel with elastic modulus 
E=210 GPa and max. allowable design stress σY=200 N/mm2. The shown boundary conditions 
applies both in the xy and xy-plane.  Calculate the maximum compressive load that can be 
carried by the beam. 
Solution:  
Design against instability: 
Noticing that bending around the weak axis (the y-axis) governs the design, the critical load is  

𝑃𝑐𝑟 =
𝜋2𝐸𝐼

𝐿𝐸
2 =

𝜋2210000
𝑁

𝑚𝑚2 (
1

12
20𝑚𝑚(10𝑚𝑚)3)

(0.699 ∙ 500𝑚𝑚)2
= 28280 N 

Design against compressive stresses: 
The maximum allowable compressive stress is given by 

𝑃𝐶 = 𝜎𝑌𝐴 = 200
𝑁

𝑚𝑚2
(10𝑚𝑚 ∙ 20𝑚𝑚) = 40000 𝑁 

Since Pcr<PC, the maximum compressive load the column can carry is Pcr=28280 N 
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Problems  

Problem 9.1 

 
For the simply supported beam-column shown, the geometry is given by the parameters L=6 m 
and diameters do=220 mm and di=200 mm. The beam is made of steel with a module of 
elasticity E=210 GPa and yield strength σy=355 N/mm2. Calculate the maximum axial 
compressive load P that can be carried by the beam column 

Ans:              Pcr=524 kN (Pc=2342 kN) 
Problem 9.2 

 
The aluminum beam column shown is of length L=8 m and has a module of elasticity E=69 GPa 
and yield stress σY=55 N/mm2. The geometry of the cross-section is given by h=200 mm, b=120 
mm and t=12 mm. The boundary conditions shown on the figure above applies both in the xy 
and xz plane. Calculate the maximum compressive load P that can be carried by the beam 
column 
Ans:              Pcr=345 kN (Pc=391 kN) 

Problem 9.3 

 
The steel beam shown in the figure above is of length L=7.5 m and has a module of elasticity 
E=210 GPa and yield stress σY=235 N/mm2. The geometry of the cross-section is given by 
h=325 mm, b=310 mm, tw=15 mm and tf=25 mm. The boundary conditions shown on the figure 
above applies both in the xy and xz plane. Calculate the maximum compressive load P that can 
be carried by the beam column 
Ans:              Pcr=4577 kN (Pc=4612 kN) 

Problem  9.4 
Solve problem 2.5 and determine by calculation if the temperature increase will cause the bar to 

buckle sideways. 

Ans;  Pcr=67468 N 

 


