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8. Deflection of beams 
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Nomenclature  

M Bending moment [Nmm] A Area  
V Shear force [N] E Module of elasticity [N/mm2] 
q,w Distributed load [N/mm] κ Curvature [1/mm] 
x Longitudinal beam coordinate [mm] R Bending radius [mm] 
u Deflection [mm] s Arc length [mm] 
θ Rotation [rad] P Load [N] 
C Integration constants I Second order area moment of inertia 

[mm4] 
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Awesome people in Engineering mechanics, ch. 8 
Stephen Timoshenko (1878 –1972) was a Ukanian born Engineer, who by many is considered 
the father of the modern civil engineering and additionally the dark lord of structural 
mechanics. Having moved back and fort between the technical universities in Sct. Petersburg, 
Kiev and Zagreb in the politically turbulent early 20th century, he immigrated to the US in 1920 
and soon became a professor at the university of Michigan. From 1936 to 1970 he was a 
professor for structural mechanics at Standford University. When retiring in 1970, he moved to 
Wuppertal, West Germany, to be with his daughter, where he remained until his death. 
Timoshenko published a wide range of textbooks on structural mechanics which remain highly 
recognized. Among those are ‘Mechanics of Materials’ (today with James Geere as main author).   
Timoshenkos most known contribution to engineering sciences is the short beam- or 
Timoshenko beam theory applied for analysis of members which have length to height ratio 
below 12. Though this theory is not presented in the present notes, it remain of great 
importance in advanced structural mechanics.  
(Photos from Wikimedia) 
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8.1 Introduction 
It has earlier been observed that symmetric beams subjected to force-couples (bending 
moments) in each end will deform in a manner so the centroid axis forms a segment of a circular 
arc with constant curvature and bending radius related by κ=1/R. For prismatic beams 
subjected to general loadings, the deformation shape of the centroid axis is more complex. In 
the present chapter, we have as scope to derive a theoretical framework that can be applied for 
calculation of the geometry of the centroid axis in the deformed state by application of plane 
geometry. This curve will be denoted 'the elastic curve'. 
Though the flexure formula for calculation of bending stresses was derived for beams in pure 
bending, it still provides results with acceptable accuracy for beams subjected to general 
loading, if the bending moment applied in the formula is calculated based on the actual 
equilibrium. 
The entire theoretical framework for analysis of beam systems is usually called the 'Bernuilli-
Euler beam theory' or 'the technical theory of beams'. The Bernuilli-Euler beam theory 
constitutes one of a very few classical engineering tools to which Sir Isaac Newton (the greatest 
engineer of all times) did not provide any significant contributions. The theory was mainly 
derived by the Switch mathematician Leonard Euler (1707-1783) who is also to be considered 
among the founding fathers of the mechanical engineering discipline. The present section 
should make it clear to students why mechanics of materials along with dynamics were 
considered a mathematical discipline until the early 20th century. The earlier mentioned 'short 
beam theory', which is not part of the present scope, is a modern extension of the theory valid 
for beams with L/h < 12…15 derived by Ukrainian-American civil engineer Stephen Timoshenko 
1878-1972, who by many is considered the father of modern engineering technics. 
It is of great importance to note that the theory described in these notes is valid only for beams 
with cross-sections containing at least one axis of symmetry. If this is not the case, the 
expressions required to calculate both defections and stresses are complicated significantly. The 
mathematical expressions for the deformed shape of the beam centroid-axis is derived on basis 
of bending moments obtained assuming that plane cross sections remain plane. This is often 
referred to as 'the Bernuilli-Euler assumption' and is in general valid for beams with a length to 
height ratio L/h > 12…15, which is a rule of thumb for when the theory provides accurate 
results. Hence, the analysis is limited to considerations of long and slender members. 
The material of the beam must be linear elastic, isotropic (meaning, that the material 
parameters are directionally independent) and homogeneous. Hence, the theory is only valid as 
long as the stresses are within the elastic range. 
The equations applied for calculation of deflections, curvature, internal forces and moments are 
valid for small deformations and rotations, since a first order Taylor approximation is used to 
approximate the quantities throughout a small beam segment. 
 

8.2 Derivations of the governing differential equations  
A beam subjected to general loadings will be considered, see Figure 8-1. We will focus our 
efforts on deriving an expression for the deflection of the neutral axis, which as mentioned 
earlier will be denoted ‘the elastic curve’ in the deformed state. It is important to note that the 
curvature is no longer constant but a function of arclength s.  
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Figure 8-1 The elastic curve (deformed centroid axis) of a beam in general loadings 
 
Initially, the right angled triangle ABC will be considered. We derive 

ΔABC: cos𝜃 =
𝑑𝑥

𝑑𝑠
 

→ 𝑑𝑠 cos𝜃 = 𝑑𝑥 
→ 𝑑𝑠 ≈ 𝑑𝑥          since cos𝜃 ≈ 𝜃 for 𝜃 ≪ 1           

(8-1) 

Hence, we may differentiate with respect to x rather than s as long as strains and deflections are 
small. This simplifies matters significantly. Furthermore, we have 

ΔABC: sin𝜃 =
𝑑𝑢

𝑑𝑠
≈

𝑑𝑢

𝑑𝑥
 

→ 𝜃 ≈
𝑑𝑢

𝑑𝑥
            since sin𝜃 ≈ 𝜃 for 𝜃 ≪ 1           

(8-2) 

Now considering the right angled triangle OAB, the following expression is derived 

ΔOAB: sin(𝑑𝜃) =
𝑑𝑠

𝑅
≈

𝑑𝑥

𝑅
 

→ 𝑑𝜃 ≈
𝑑𝑥

𝑅
            

→
𝑑𝜃

𝑑𝑥
≈

1

𝑅
= 𝜅            

(8-3) 

This relation can alternatively be derived based on the relation for the arc length of the segment 
ds = Rdθ. However, we recall from our analysis of beams in pure bending in chapter 4, that the 
curvature is related to the bending moment by 

𝜅 =
𝑀

𝐸𝐼
                for 𝜃 ≪ 1           (8-4) 

Combining the two equations above, we obtain 
𝑑𝜃

𝑑𝑥
≈

𝑀

𝐸𝐼
           (8-5) 

The expressions applied in this context are only valid for small deflections. If this assumption is 
violated, the curvature is no longer given by the equation above, but by the full expression 
known from differential geometry. This is given by 

𝜅 =
𝑑𝜃

𝑑𝑠
=

𝑑2𝑢

𝑑𝑥2

√(1+(
𝑑𝑢

𝑑𝑥
)

2
)

3
≈

𝑑2𝑢

𝑑𝑥2                     for 𝜃 ≪ 1, since 
𝑑𝑢

𝑑𝑥
≪ 1           (8-6) 

The full expression required for large deflections in the finite strain theory would complicate 
our analysis significantly. Hence, the simplified expressions are extremely convenient.  
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8.3 The Bernuilli-Euler beam theory  
The complete framework available for analysis of long and slender beams can now be 
summarized in form of the following four coupled differential equations to be solved wrt. 
appropriate boundary conditions 

𝑑𝑢

𝑑𝑥
= 𝜃(𝑥) (8-7) 

𝑑𝑀

𝑑𝑥
= 𝑉(𝑥) (8-8) 

𝑑𝜃

𝑑𝑥
=

𝑀(𝑥)

𝐸𝐼
 (8-9) 

𝑑𝑉

𝑑𝑥
= −𝑤(𝑥) (8-10) 

 

Calculated example 8A: Deflection of 
cantilever beam 
For the cantilever beam shown in Figure 
8-2, determine the equation of the elastic 
curve by direct integration.  
 
Solution 
Based on the free body diagram shown in 
Figure 8-2, the solution to the moment and 
vertical force equilibrium equations is 
obtained as RA=P and MA=-PL. Hence, the 
internal sectional force in the beam is 
constant throughout the entire length. We 
have 
𝑉 = 𝑃 

 

 
Figure 8-2 

The equation of the moment curve is  obtained by
𝑀 = ∫ 𝑃 𝑑𝑥 = 𝑃𝑥 + 𝐶1  
The integration constant C1 is obtained on basis of the boundary condition 
𝑀(𝑥 = 𝐿) = 0  
→ 𝑃 ∙ 𝐿 + 𝐶1 = 0  
→ 𝐶1 = −𝑃𝐿 = 𝑀𝑚𝑎𝑥 
The elastic curve can now be obtained as the solution to the following differential equation 
𝑑2𝑢

𝑑𝑥2
=

𝑀

𝐸𝐼
→ ∬

𝑑2𝑢

𝑑𝑥2
𝑑𝑥𝑑𝑥 =

1

𝐸𝐼
∬ 𝑀 𝑑𝑥𝑑𝑥 

=
1

𝐸𝐼
∬ 𝑃𝑥 − 𝑃𝐿 𝑑𝑥𝑑𝑥 =

1

𝐸𝐼
∫

𝑃

2
𝑥2 − 𝑃𝐿𝑥 + 𝐶2 𝑑𝑥 

=
1

𝐸𝐼
(

𝑃

6
𝑥3 −

𝑃𝐿

2
𝑥2 + 𝐶2𝑥) + 𝐶3 

This is the equation for the elastic curve. The boundary conditions are applied in order to 
calculate the integration constants 

𝜃(𝑥 = 0) =
𝑑𝑢

𝑑𝑥
(𝑥 = 0) = 0 

1

𝐸𝐼
(

𝑃

2
∙ 02 − 𝑃𝐿 ∙ 0 + 𝐶2) = 0 

→ 𝐶2 = 0 
 
𝑢(𝑥 = 0) = 0 

→
1

𝐸𝐼
(

𝑃

6
∙ 03 −

𝑃𝐿

2
∙ 02) + 𝐶3 = 0, → 𝐶3 = 0 
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8.4 Standard solutions   
In table 1, standard solutions for deflection and rotation for beams with given boundary 
conditions are presented. This can be applied directly for design.  

 

Load case and BCDs  Max. Deflection End slope Equation of elastic curve  

 

−
𝑃𝐿3

3𝐸𝐼
 −

𝑃𝐿2

2𝐸𝐼
 𝑢 =

𝑃

6𝐸𝐼
(𝑥3 − 3𝐿𝑥2) 

 

−
𝑤𝐿4

8𝐸𝐼
 −

𝑤𝐿3

6𝐸𝐼
 𝑢 = −

𝑤

24𝐸𝐼
(𝑥4 − 4𝐿𝑥3 + 6𝐿2𝑥2) 

 

−
𝑀𝐿2

2𝐸𝐼
 −

𝑀𝐿

𝐸𝐼
 𝑢 = −

𝑀

2𝐸𝐼
𝑥2 

 

−
5𝑤𝐿4

384𝐸𝐼
 ±

𝑤𝐿3

24𝐸𝐼
 𝑢 = −

𝑤

24𝐸𝐼
(𝑥4 − 2𝐿𝑥3 + 𝐿3𝑥) 

 

−
𝑃𝐿3

48𝐸𝐼
 ±

𝑃𝐿2

16𝐸𝐼
 

For 𝑥 ≤
𝐿

2
: 

𝑢 =
𝑃

48𝐸𝐼
(4𝑥3 − 3𝐿2𝑥) 

 

𝑀𝐿2

9√3𝐸𝐼
 𝜃𝐴 = +

𝑀𝐿

6𝐸𝐼
 

𝜃𝐵 = −
𝑀𝐿

3𝐸𝐼
 

𝑢 = −
𝑀

6𝐸𝐼𝐿
(𝑥3 − 𝐿2𝑥) 

Table 8-1 Standard solutions to beam problems 

 

8.5 The principle of superposition for deflection of beams 
The principle of superposition also applies for rotation and deflection of beams in exactly the 
same fashion as for bending moment and shear force diagrams. Hence, the standard solutions 
given in Table 1 can be added by superposition to form more complex load cases.  
It will be demonstrated how this works in the following calculated example. It is considered 
most efficient to explain the principle of superposition directly on basis of two calculated 
examples.    
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Calculated example 8B: Maximum 
deflection calculated by superposition 
For the beam shown in Figure 8-3A, 
calculate the elastic curve and the 
maximum deflection.  
 
Solution 
Reviewing the problem, it is realized that 
the problem can be separated into a) a 
simply supported beam subjected to a 
distributed load and b) a simply 
supported beam subjected to a 
concentrated load. By superposition, the 
elastic curve can be obtained as the sum of 
the elastic curves for the two separate 
cases shown in Figure 8-3B and C.  
Using the standard solution in Table 8-1, 
the maximum deflection is obtained for 
x=L/2 and is given by 

𝑢𝑚𝑎𝑥 = 𝑢𝑃 (𝑥 =
𝐿

2
) + 𝑢𝑤 (𝑥 =

𝐿

2
) = 

−
5𝑤𝐿4

384𝐸𝐼
−

𝑃𝐿3

48𝐸𝐼
  

 
Figure 8-3 

The equation for the elastic curve is for x<L obtained in a similar fashion 

𝑢 = (−
𝑤

24𝐸𝐼
(𝑥4 − 2𝐿𝑥3 + 𝐿3𝑥)) + (−

𝑃

48𝐸𝐼
(4𝑥3 − 3𝐿2𝑥))  

 

 

 

 

8.6 Statically indeterminate beams 
It is recalled that the term ‘statically indeterminate’ refers to a beam configuration where the 
number of equilibrium equations available are insufficient in order to determine the reactions. 
In this section it will be demonstrated how statically indeterminate beam problems can be 
solved by including the differential equations for rotation and deflection in the formulation of 
the problem.  
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8.6.1 Solution by direct integration 
 

Calculated example 8C: The force equilibrium of an end-supported cantilever solved by 
direct integration 

 

 

 

 

Figure 8-4 Figure 8-5 
For the beam shown in Figure 8-4, determine the vertical reaction force in point B.  
 
Solution 
By counting the reactions, it is realized that only two equations of equilibrium are available for 
calculation of three unknowns (RA, RB and MA), so the beam problem is statically indeterminate. 
In order to obtain a solution to the static equilibrium, the equations for the rotation and 
deflection are required. By adding a section (a cut!) between point A and B and considering the 
right segment, the free-body diagram in Figure 8-5 is obtained. The equation of the internal 
bending moment curve is now given by 

𝑀 + 𝑤(𝐿 − 𝑥) ∙
𝐿−𝑥

2
− 𝑅𝐵(𝐿 − 𝑥) = 0 → 𝑀 = −𝑤(𝐿 − 𝑥) ∙

𝐿−𝑥

2
+ 𝑅𝐵(𝐿 − 𝑥)   

= −
𝑤

2
(𝐿2 + 𝑥2 − 2𝐿𝑥) + 𝑅𝐵𝐿 − 𝑅𝐵𝑥 

The deflection is now obtained by integration 

𝑢 = ∬ 𝑀 𝑑𝑥 = ∬ −
𝑤

2
(𝐿2 + 𝑥2 − 2𝐿𝑥) + 𝑅𝐵𝐿 − 𝑅𝐵𝑥 𝑑𝑥 

= −
𝑤

2
(

𝐿2

2
𝑥2 +

1

12
𝑥4 −

𝐿

3
𝑥3) +

𝑅𝐵𝐿

2
𝑥2 −

𝑅𝐵

6
𝑥3 + 𝐶1𝑥 + 𝐶2 

The integration constants are determined on basis of the boundary conditions 
𝜃(𝑥 = 0) = 0 → 𝐶1 = 0            u(𝑥 = 0) = 0 → 𝐶2 = 0 
On basis of the third boundary condition, a third equation is now obtained 
𝑢(𝑥 = 𝐿) = 0 

→ −
𝑤

2
(

𝐿2

2
𝐿2 +

1

12
𝐿4 −

𝐿

3
𝐿3) +

𝑅𝐵𝐿

2
𝐿2 −

𝑅𝐵

6
𝐿3 = 0 

→ −𝑤 (
𝐿4

4
+

𝐿4

24
−

𝐿4

6
) +

𝑅𝐵𝐿3

2
−

𝑅𝐵𝐿3

6
= 0 

→ −
3𝑤𝐿4

24
+

2𝑅𝐵𝐿3

6
= 0 →

𝑅𝐵𝐿3

3
=

3𝑤𝐿4

24
 

→ 𝑅𝐵 =
9

24
𝑤𝐿 =

3

8
𝑤𝐿 

The reactions in point A can now be obtained on basis of conventional force and moment    
equilibrium.  
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8.6.2 Solution by superposition 
 

Calculated example 8D: The force 
equilibrium of an end-supported 
cantilever solved by superposition 
Force the beam shown in Figure 8-6, 
determine the vertical reaction in point B 
applying the principle of superposition.  
 
Solution 
Decomposing the problem as shown in 
Figure 8-6 and the standard solution 
contained in Table 8-1, the boundary 
condition in point B enables us to obtain a 
single equation, which can be solved for RB: 
𝑢(𝑥 = 𝐿) = 0  
𝑢(𝑥 = 𝐿) = 𝑢𝑃(𝑥 = 𝐿) + 𝑢𝑤(𝑥 = 𝐿)     

= −
𝑤𝐿4

8𝐸𝐼
+

𝑃𝐿3

3𝐸𝐼
  

Setting P=RB, the following equation is 
obtained 

𝑢(𝑥 = 𝐿) = 0 = −
𝑤𝐿4

8𝐸𝐼
+

𝑅𝐵𝐿3

3𝐸𝐼
  

→ 𝑅𝐵 =
3

8
𝑤𝐿  

 
Figure 8-6 
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Problems  
 

 
Figure P8.1 

 

 
 
 
Figure P8.2 

 
Problem 8.1: For the beam shown in Figure P8.1, determine a) the equation of the elastic 
curve, b) the maximum deflection, c) the maximum angle of rotation   
Problem 8.2: For the beam shown in Figure P8.2, determine a) the equation of the elastic 
curve, b) the maximum deflection, c) the maximum angle of rotation   
 

 
Figure P8.3 
Problem P8.3: For the beam shown in Figure P8.3, determine a) the equation of the elastic 
curve, b) the maximum deflection, c) the maximum angle of rotation   
 

 
Figure P8.4 

 
Figure P8.5 

 
Problem 8.4:  
For the beam shown in Figure P8.4, calculate the reaction in B in terms of w and L 
(Hint: you may apply the standard solutions in table 8.1) 
 
Problem 8.5: 
For the beam shown in Figure P8.5, calculate the reaction in B in terms of M and L  
(Hint: you may apply the standard solutions in table 8.1) 
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Problem 8.6: 
For the beam shown in Figure P8.6, calculate the maximum deflection.  
The system parameters are given by di=200 mm, do=220 mm, L=3 m, w=5 kN/m and P=9 kN. 
The beam is made of steal with elastic modulus E=210 GPa.  
(Hint: you may apply the standard solutions in table 8.1) 
Ans: u=-17.20 mm (downwards)  

 

Figure P8.6 


