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Nomenclature  

M Bending moment [Nmm] h, r  Cross sectional dimensions [mm] 
V Shear force [N] y, y1 Distance, centroid to section [mm] 
Q Distributed load [N/mm] d, d1 Distance, global to local centroid [mm] 
x Longitudinal beam coordinate [mm] b Width [mm] 
σ Normal stress [Nmm2] A Area  
τ Shear stress [Nmm2] Q First order area moment [mm3] 
F Force in general [N] I Second order area moment of inertia 

[mm4] 
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5.1.  Motivation 
In this chapter, shear stresses in long and slender beams will be considered. From statics, we 
recall the two basic differential equations, 

𝑑𝑀

𝑑𝑥
= 𝑉,      

𝑑𝑉

𝑑𝑥
= −𝑞 

It follows from the first of the two equations that for a beam in pure bending (yielding a 
constant internal bending moment) the internal shear force V will be zero throughout the length 
of the beam. However, it is also clear that for a beam subjected to general loadings where the 
internal bending moment will vary throughout the beam length, the internal shear force will 
sustain a non-zero value. This shear force will produce a stress in the beam in addition to the 
normal stresses due to bending. If a cross section of a prismatic beam is considered, the shear 
force will be parallel to the section. The corresponding stress will therefore be a shear, see 
Figure 5-1.  
For very long and slender members, the bending stresses will for most design cases be 
dominating, since thse usually are an order of magnitude larger than the shear stresses. 
However, the shorter the considered beam is, the more significant the shear stress component 
becomes. Since shear stresses are more critical for ductile materials than normal stresses, the 
total stress is underestimated if design is based only on calculation of normal stresses due to 
bending. This is our motivation for mastering the theory contained in the present chapter.  

5.2.  Derivation of Grasshof’s formula 
A rectangular beam in non-uniform bending will be considered, see Figure 5-1-A. Since the 
internal bending moment is not constant, it follows that the beam is subjected to an internal 
shear force V. A section of the beam above a line parallel to the z-axis and with a distance of y1 
from the centroid C in the y-direction will be considered. The section has centroid C1 and area 
A1. This section will now be considered along a small length of the beam dx so it forms a volume. 
The variation of stresses due to bending is shown in Figure 5-1-C. Since the upper face of the 
segment is free, it must be free of shear stress. However, since the stresses σ1 and σ2 are not 
equal, a stress component must act parallel to the lower face of the considered segment if 
equilibrium is to be maintained. Since this stress is parallel to the lower face, it is a shear 
component. Furthermore, we recall from the basic definition of shear, that the shear along the 
horizontal lower face will equal the shear along the vertical right face. Hence, if our objective is 
to obtain an expression for the stress acting in the cross-section, we may calculate the shear 
stress acting along the lower face, since the two shear terms will be equal.   

 
Figure 5-1 A rectangular beam in non-uniform bending  
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The shear force along the lower face of the segment can be calculated by 𝐹3 = 𝐹2 − 𝐹1 in which 
F1 and F2 denote the forces corresponding to the respective normal stresses σ1 and σ2. From the 
relations between stresses and internal forces introduced in Chapter 1, we obtain the following 
expression for F1     
 

𝐹1 = ∫ 𝜎1𝑑𝐴 =
𝐴

∫
𝑀𝑦

𝐼𝑧
𝑑𝐴

𝐴

 (5-1) 

By equivalent means, we obtain the following expression for F2 
 

𝐹2 = ∫ 𝜎2𝑑𝐴 =
𝐴

∫
(𝑀 + 𝑑𝑀)𝑦

𝐼𝑧
𝑑𝐴

𝐴

 (5-2) 

In the expressions derived above, the sign convention has been neglected, since we now manage 
those ourselves. The force along the lower face can now be obtained as 
 

𝐹3 = 𝐹2 − 𝐹1 = ∫
𝑑𝑀𝑦

𝐼𝑧
𝑑𝐴 =

𝐴

𝑑𝑀

𝐼𝑧
∫ 𝑦 𝑑𝐴

𝐴

 (5-3) 

We will now write this on the more compact form  
 𝐹3 =

𝑑𝑀

𝐼𝑧
𝑄   with 𝑄 = ∫ 𝑦 𝑑𝐴

𝐴
 (5-4) 

In which Q denotes the first order area moment of the considered section. It is importance to 
note, that Q depends on at which height y1 the section is considered, hence, where the shear 
stresses are required calculated. On the other hand, if the shear stress is assumed uniformly 
distributed in the z-direction of the cross section, the shear stress can alternatively be defined 
as 
 𝐹3 = 𝜏𝑏𝑑𝑥 (5-5) 
In which bdx represents the area of the lower section face where the shear stresses are 
calculated. Letting equation 5-4 equal equation 5-5, we obtain  
 𝜏𝑏𝑑𝑥=

𝑑𝑀

𝐼𝑧
𝑄 

𝜏 =
𝑑𝑀

𝑑𝑥

𝑄

𝐼𝑧𝑏
=

𝑉𝑄

𝐼𝑧𝑏
 

(5-6) 
This result is known as Grasshofs Formula and is generally valid for cross section with faces 
parallel to the y-axis.  
The terms VQ/Iz is denoted the shear flow and is a measure for how must shear force that 
‘passes’ through the considered segment. This is converted to a stress using the assumption that 
stresses are uniformly distributed in the z-direction. In order for this to hold, the dimensions of 
the considered beam must be small. 

5.2.1 Shear stresses in a beam of solid rectangular cross-section 

Grasshof’s formula can be simplified significantly for a solid rectangular cross-section. Applying 

the notation used in Figure 5-1, the area of the considered section is given by 

 
𝐴1 = 𝑏 (

ℎ

2
− 𝑦1) (5-7) 

Furthermore, the distance from the local to the global centroid is given by 

 
𝑑1 = 𝑦1 +

1

2
(

ℎ

2
− 𝑦1) =

ℎ

4
+

𝑦1

2
 (5-8) 

The first order area moment is now calculated. The following expression is obtained 

 
𝑄 = 𝐴1𝑑1 =  𝑏 (

ℎ

2
− 𝑦1) (

ℎ

4
+

𝑦1

2
) 

=  𝑏 (
ℎ2

8
−

ℎ𝑦1

4
+

ℎ𝑦1

4
−

𝑦1
2

2
) 

(5-9) 
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= 𝑏 (
ℎ2

8
−

𝑦1
2

2
) 

Substituting this into Grasshof’s formula, we obtain 
 

𝜏 =
𝑉𝑄

𝐼𝑧𝑏
=

𝑉𝑏 (
ℎ2

8 −
𝑦1

2

2 )

𝐼𝑧𝑏
 

(5-10) 

When reviewing this expression, we realize that the shear stress τ varies as a quadratic function 
of y1 and that the maximum shear will occur in the horizontal plane containing the centroid for 
(in the middle of the beam cross section) for y1 =0. The stress distribution is visualized on 
Figure 5-2. The maximum stress are obtained to 
 

𝜏𝑚𝑎𝑥 =
𝑉 (

ℎ2

8
)

(
𝑏ℎ3

12 )
=

3

2

𝑉

ℎ𝑏
=

3

2

𝑉

𝐴
 (5-11) 

This expression is valid only for solid rectangular cross sections.  
 

 
Figure 5-2 Distribution of shear stresses over a rectangular cross section 
 

5.2.2 Shear stresses in a beam with I-shaped cross-section 
The shear stress in an I-beam sustains a rather low value in the flanges and is larger in the web. 
The parabolic distribution of stresses over the web is in this case not dominating, and a fairly 
accurate expression appropriate for design purposes can be obtained by assuming the shear 
stresses uniformly distributed over the web. 
 

τ𝑚𝑎𝑥 ≈
𝑉

𝐴𝑤𝑒𝑏
 (5-12) 

You are to investigate the accuracy of this expression yourself in Problem 5.2.  

5.1.2 Shear stresses in a solid circular beam 
Circular cross sections are fairly problematic when applying the present framework for 
calculation of shear stress, since the sides of the cross-section are not parallel to the y-axis. 
However, the maximum shear stress will occur along the neutral axis where the faces actually 
locally are parallel to the y-axis. Hence, a general expression for the stress distribution cannot 
be obtained using Grasshof’s Formula, but we may use it to assess the maximum shear stress for 
y1=0. Applying an approach equivalent to what we did with the rectangular cross section, we 
obtain the following expression 
 

τ𝑚𝑎𝑥 =
4𝑉

3𝐴
 (5-13) 

We will do a calculated example to see how Grasshof’s formula is applied.   
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Calculated example 5A: box shaped beam subjected to shear force 

 
Figure 5-3 
The geometry of the box shaped beam shown in Figure 5-3-A is given by the parameter set: 
h=190 mm, b=110 mm and t=13 mm. The beam is subjected to an internal shear force V=75 kN. 
Calculate a) the maximum shear stress in the beam, b) the shear stress in point A. 
 
Solution 
The stresses can be obtained using Grasshofs Formula (5-6). Initially, the moment of inertia is 
calculated by 

𝐼𝑧 =
1

12
(𝑏ℎ3 − (𝑏 − 2𝑡)(ℎ − 2𝑡)3) = 31.99 ∙ 106mm4   

a) The maximum shear stress will occur for the section having the largest Q/b ratio. This is for 
the 

considered beam obtained for the cross-section along the line formed by y=0. The first order 
are moment of the section shown in Figure 5-3-B is given by 

𝑄 = 2 ∙
ℎ

2
𝑡

ℎ

4
+ (𝑏 − 2𝑡)𝑡 (

ℎ

2
−

𝑡

2
) = 0.214 ∙ 106mm3   

Now applying Grasshofs Formula, we have 

𝜏𝑚𝑎𝑥 =
𝑉𝑄

𝐼𝑧𝑏
=

75 ∙ 103N ∙ 0.214 ∙ 106mm3

31.99 ∙ 106mm4 ∙ 2 ∙ 13mm
= 19.29

N

mm2
 

b) The first order area moment for the section shown in Figure 5-3-C is given by 

 𝑄 = 𝑏𝑡 (
ℎ

2
−

𝑡

2
) = 0.127 ∙ 106mm3 

Hence, the shear stress is given by 

𝜏𝐴 =
𝑉𝑄

𝐼𝑧𝑏
=

75 ∙ 103N ∙ 0.127 ∙ 106mm3

31.99 ∙ 106mm4 ∙ 2 ∙ 13mm
= 11.41

N

mm2
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Problems – Chapter 5 

 

 

Figure P5.1 Figure P5.2 
 
Problem 5.1  
Figure P5.1 shows a rectangular beam with internal forces Mz=250∙103Nmm and V=10∙103N. 
The dimensions of the beam cross-section are given by h=30 mm and b=15 mm. a) calculate 
the maximum tensile stress in the beam, b) calculate the maximum shear stress in the beam 
and describe along which line this stress occurs (use the letters in figure 5.1) 
Ans.:           a) σx=111.1 N/mm2, b) τ=33.3 N/mm2 
 
Problem 5.2 
The beam cross-section shown in Figure P5.2 is subjected to an internal bending moment with 
magnitude |Mz|= 75000 Nm and internal shear force with magnitude |V|=80 kN, both action in 
the directions shown on the figure. The geometry of the beam is given by h=325 mm, b=310 
mm, tw=15 mm and tf=25 mm. a) calculate the maximum tensile normal stress due to bending 
and describe along which line this stress occurs, b) calculate the maximum shear stress in the 
beam cross-section using the approximate formula and describe along which line this stress 
occurs c) calculate the maximum shear stress in the beam cross-section using Grasshoffs 
Formula and compare the obtained result with the result obtained in  question b), d) calculate 
the shear stress in the flange-weg junction (marked J) using Grasshoffs Formula.  
Ans.:          a) σx=32.5 N/mm2, b) τ=19.4 N /mm2, c) τ=18.5 N/mm2, d) τ=16.5 N/mm2  

 

 
Problem 5.3 
The beam shown in Figure P5.3 has geometry 
given by the following set of parameters: 
h=180 mm, b=120 mm, tf=16 mm and tw=14 
mm. For V=15 kN, calculate a) the maximum 
shear stress in the beam cross-section, b) the 
shear stress in the flange-web junction. 
 
Ans:             
a) τmax=8.31 N/mm2, b) τjunction =7.383 N/mm2 

                    
 

Figure P5.3  
 


