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Nomenclature  

T Torsional moment/torque [Nmm] G Shear modulus [N/mm2] 
r Shaft radius [mm] J Polar moment of inertia [mm4] 
ρ Internal shaft radius, r>ρ [mm] τ Shear stress [N/mm2] 
γ Shear strain [rad] θ Angles in general [rad] 
φ Angle of twist [rad] L Length [mm] 
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3.1 Introduction  
Torsion refers to a state of stress induced by twisting of a slender member caused by moments 
around the longitudinal axis. This direction will in the following again be denoted the axial 
direction and furthermore the torsional moments are usually referred to as torques. The 
simplest case of torsion imaginable is constituted by a shaft with constant diameter subjected to 
a torque in each end. This is shown in Figure 3-1-A and B which also shows the two different 
ways of drawing a torsional moment (as a moment with an indicated rotation and as a vector).  
Recalling that stresses always are calculated on basis of internal forces and moments, the 
internal torques will be considered. It is noted, that the internal moment in the shaft shown is 
constant and is of magnitude T. This is due to, that no matter in which section we cut the shaft, 
the internal moment in this section must solely maintain equilibrium with the end torque T. We 
shall in the following see that a shaft subjected to pure torsion is in a state of pure shear. 
It is of great importance to note that the theory described in these notes is valid only for solid or 
hollow cylindrical shafts. All cross-sections which are plane in the unloaded state are assumed 
to remain plane and undistorted in the loaded state, which is a fair assumption due to axi-
symmetry, see Figure 3-3. Furthermore, the angle of twist φ and the shear strain γ must be 
small (we write θ, φ << 1). The material of the shaft must be linear elastic, isotropic (meaning 
that the material parameters are directionally independent) and homogeneous. Hence, the 
theory is only valid as long as the stresses are within the elastic range. 
Our motivation for learning to master the theory contained in the present chapter is to calculate 
shear stress and deformation by twist of shafts, which as mechanical components are widely 
applied in drive train systems. An example of a shaft and a mechanical differential for 
transmission of torque through a system is shown in Figure 3-2. The present theory is therefore 
among the most important tools for mechanical design which strength of materials has to offer.  
 

 
Figure 3-1, A: shaft loaded by end torques shown as rotations, B: shaft loaded by end torques 
shown as vectors, C : cross-section of a shaft subjected to torsional loads 
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Figure 3-2 Shafts and differential for transmission of torque (from Wikimedia, GNU free 
documentation license) 

 

Figure 3-3 Visualization of the state of deformation caused by torsion (obtained by scaling of 
results obtained by finite element analysis). It is noted that the cross-sections remain plane and 
undistorted  

3.2 Torsional equilibrium  
If the cross-section of the shaft in Figure 3-1-A and -B is considered, the internal torque can be 
calculated by summing up all contributions of force times distance throughout the cross-
sectional area. If an infinitesimally small area dA with a radial distance from the centre of the 
shaft is considered, the force dF contributing to the torque will act perpendicular to the radial 
direction. The equilibrium of torque T requires that the following condition to be be 
 

𝑇 = ∫ 𝜌 𝑑𝐹 = ∫ 𝜌 𝜏 𝑑𝐴 (3-1) 

in which Cauchy's definition of shear stress 𝜏 = 𝑑𝐹/𝑑𝐴 has been applied in order to rewrite the 
integral in area dA instead of force dF. However, the distribution of shear stress throughout the 
cross-section is statically indeterminate, which in this case means that equilibrium of force (or 

https://commons.wikimedia.org/wiki/File:Transmission_diagram.JPG
https://upload.wikimedia.org/wikipedia/commons/2/27/Transmission_diagram.JPG
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stress) is not sufficient when aiming to find the equilibrium state. It is therefore necessary to 
consider the deformations in order to determine the stress distribution. 

3.3 Mode of deformation: angle of twist and shear strain  
In Figure 3-4 a shaft subjected to torsional loads is shown. It is noted that a circular section of 
radius ρ is considered and not the outer surface defined by the shaft radius, c > ρ. Torsion leads 
to a twist of the cross-section so the point A is shifted to the position A’ in the deformed state. 
The centre point is denoted O and the angle spanned by the lines OA and OA’ is called 'the angle 
of twist' and is denoted φ. This angle is a measure for how much the shaft has been deformed by 
torsion. Since the shaft is circular, it can be observed that plane cross-sections remain plane and 
undistorted. This is not the case for cross-sections with other geometries, which in general may 
warp in torsion. The line A-B, which is horizontal in the unloaded state together with B-A’ spans 
the angle, which is recognized as the shear strain. The shown element can be observed to be free 
of normal stress, so a shaft in pure torsion is in a state of pure shear. For small angles, the 
triangle AA'O can be considered right-angled. The tangents relation therefore gives the 
following equation 
 𝑡𝑎𝑛(𝛾) =

𝑥

𝐿
 (3-2) 

Equivalently, we get the following expression when considering OAA’ 
 𝑡𝑎𝑛(𝜑) =

𝑥

𝜌
 (3-3) 

Isolating x in Eq. 3-2 and substituting the obtained expression into Eq. 3-3 yields 
 

𝑡𝑎𝑛(𝛾) =
𝑡𝑎𝑛(𝜑)𝜌

𝐿
 (3-4) 

These equations govern the shaft deformations and are valid for moderately large angles. 
However, it is difficult to obtain an analytical solution for those due to the harmonic term. We 
will therefore in the following section simplify those to a form more appropriate for analytical 
calculations. We note before proceeding that angles always are calculated in radians in 
structural mechanics. 
 
 

 
Figure 3-4 Torsional twist and shear strain of a shaft 
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1.1.1. First order Taylor approximations for small angles 
Taylor's formula is a mathematical tool enabling us to approximate a function f(x) with a 
polynomial of n’th order on basis of f(a) and the n-derivatives in the point x = a. Obviously, f and 
it's derivatives to the n’th - 1 order are required to be continuous differentiable. It is noted that 
Taylor polynomials not always converge for 𝑛 → ∞ though this is often the case. 
 

𝑓(𝑥) = ∑
𝑓(𝑛)(𝑎)

𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

 (3-5) 

The factorial 𝑛! Is defined as 𝑛 ∙ (𝑛 − 1) ∙ … ∙ 1 (example: 4 ∙ 3 ∙ 2 ∙ 1). The curious reader may 
have noted, that the factorial 0! = 1. (per definition) in order for this to make sense. Anyone 
taking particular interest in this detail, is encouraged to go and bother some mathematician 
with it. For engineering applications, we in most cases continue by (as fast as possible) 
simplifying Taylor's formula to a first order approximation 
 𝑓(𝑥) ≈ 𝑓(𝑎) + 𝑓´(𝑎)(𝑥 − 𝑎)𝑛 (3-6) 
This is equivalent to approximating f(x) by a linear function through the point f(a) and f’(a). 
Applying this to the well-known trigonometric functions sine, cosine and tangents with a=0 and 
x=θ yields 
 sin(𝜃) ≈ sin(0) + cos(0) 𝜃 = 𝜃 (3-7) 
 cos(𝜃) ≈ cos(0) − sin(0)𝜃 = 1 (3-8) 
 

tan(𝜃) ≈
𝜃

1
= 𝜃 (3-9) 

The trigonometric functions are shown in Figure 3-5 which can also be used to assess the 
validity range of the conducted approximation. Applying the last result in equation enables us 
for small angles (φ, θ << 1) to perform the following simplification 
 

𝑡𝑎𝑛(𝛾) =
𝑡𝑎𝑛(𝜑)𝜌

𝐿
 

→ 𝛾 ≈
𝜑𝜌

𝐿
 

(3-10) 

OAA’ is strictly speaking not right angled, so 𝜑 has to be moderately small for the tangent 
relations to be a fair approximation. However, we could also have obtained this relation on basis 
of the arclength AA’, which would give us the relation 𝛾𝐿 = 𝜑𝜌, so the result remains valid.  
The expression shown above reveals that the shear strain is linearly distributed throughout the 
cross-section with maximum at the outer surface of the shaft (for ρ=r). Hence we have 
 𝛾𝑚𝑎𝑥 ≈

𝜑𝑟

𝐿
 (3-11) 

The two equations provides the following expression for the shear strain in terms of maximum 
shear strain 
 𝛾 = 𝛾𝑚𝑎𝑥

𝜌

𝑟
 (3-12) 

This enables us to start looking into stress calculations. 
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Figure 3-5 First order Taylor approximation of the functions sine and cosine valid for small 
angles (in radians) 
 

3.4 Calculation of shear stresses due to torsion 
Having obtained mathematical expressions for the shaft deformations in terms of the angle of 
twist φ and the shear strain γ in the previous chapter, our scope is now to use these to derive 
expressions that can be used for stress calculations. After all, this is what is required for 
practical design purposes, and is therefore of great importance. 
In order to obtain the shear stresses, Hook's law for shear stresses will be applied on the well-
known form 𝜏 = 𝐺𝛾, in which G is the shear modulus and is a material specific parameter. This 
enables us to relate the shear strain in Eq. 3-12 to shear stresses by multiplying both right and 
left hand side with G 
 𝛾 = 𝛾𝑚𝑎𝑥

𝜌

𝑟
 

→ 𝐺𝛾 = 𝐺𝛾𝑚𝑎𝑥

𝜌

𝑟
 

(3-13) 

We immediately recognize these terms as shear stresses and may now write  
 𝜏 = 𝜏𝑚𝑎𝑥

𝜌

𝑟
 (3-14) 

The physical interpretation of this result is that the shear stresses vary linearly throughout the 
cross-section as a function of the radial distance to the center of the shaft. Furthermore, it is 
observed that the shear stresses have maximum value at the outer surface of the shaft (for ρ=r). 
All that is now left to do, in order to obtain a really awesome equation for design of shafts, is to 
relate the shear stresses to the internal torques. In order to do so, we will return to considering 
Figure 3-1, that led us to derive equation 3-1. This can with the knowledge of the state of strain 
we have gained, be rewritten as 
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𝑇 = ∫ 𝜌 𝜏 𝑑𝐴 

   = ∫ 𝜌𝜏𝑚𝑎𝑥

𝜌

𝑟
 𝑑𝐴 

   =
𝜏𝑚𝑎𝑥

𝑟
∫ 𝜌2 𝑑𝐴 

(3-15) 

We will now for the sake of convenience define the polar moment of inertia in the following 
fashion 
 

𝐽 = ∫ 𝜌2 𝑑𝐴 (3-16) 

Substituting this into equation 3-15, we obtain the following expressions 
 𝑇 =

𝜏𝑚𝑎𝑥

𝑟
𝐽 =

𝜏

𝜌
𝐽 

(3-17) 

Rearranging this, we obtain what we were after, namely an expression which gets us the 
torsional stresses 
 

𝜏(𝜌) =
𝑇𝜌

𝐽
 (3-18) 

 
𝜏𝑚𝑎𝑥 =

𝑇𝑟

𝐽
 (3-19) 

These two formulas can be used for engineering design. The shear stresses can be observed to 
be linearly distributed over the cross-section with maximum at the outer surface and to be zero 
in the center of the shaft. This is visualized in Figure 3-6. 

 

 
 

 
Figure 3-6 Distribution of shear stress due to torsion throughout the cross-section of a shaft  
 

3.5 Calculation of the angle of twist  
As a measure of deformations due to torsion, the angle of twist is usually calculated. 
We will return to the derived expression for the shear strain given by 
 𝛾 =

𝜑𝜌

𝐿
 (3-20) 

Furthermore, we have 
 

𝛾 =
𝜏𝑚𝑎𝑥

𝐺
=

𝑇𝑟

𝐽

1

𝐺
=

𝑇𝑟

𝐺𝐽
 (3-21) 

Letting the two derived expressions for the shear strain equal each other, the following 
expression for the angle of twist is derived 
 𝜑𝑟

𝐿
=

𝑇𝑟

𝐽𝐺
 (3-22) 
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→ 𝜑 =
𝑇𝐿

𝐽𝐺
 

This expression can be applied for calculation of the angle of twist of a shaft with constant  
cross-section subjected to end torques as shown in Figure 3-1. For more complex shafts with 
various diameters and external torques added between the end points, the angle of twist can be 
calculated by adding the contributions from each separate shaft segments by the equation 
 

𝜑 = ∑
𝑇𝐿

𝐽𝐺
 (3-23) 

 

3.5.1 Calculation of the polar moment of inertia   
The polar moment of inertia is now obtained for a solid shaft by evaluation of the integral in the 
following expression  
 

𝐽 = ∫ 𝜌2𝑑𝐴 = ∫ ∫ 𝜌2(𝜌𝑑𝜌𝑑𝜃)

𝑟

0

2𝜋

0
𝐴

 

= ∫ ∫ 𝜌3𝑑𝜌𝑑𝜃

𝑟

0

2𝜋

0

 

(3-24) 

in which we have utilized that the infinitesimal area considered is given by 𝑑𝐴 = 𝜌𝑑𝜌𝑑𝜃. We 
recall that a double integral is solved by carrying out the first integration in one variable 
treating the other variable as a constant, before conducting the second integration threating the 
first variable as a constant. This yields 
 

∫ ∫ 𝜌3𝑑𝜌𝑑𝜃 =

𝑟

0

2𝜋

0

∫ [
𝜌4

4
]

0

𝑟

𝑑𝜃
2𝜋

0

 

= ∫
𝑟4

4
𝑑𝜃

2𝜋

0

 

= [
𝑟4

4
𝜃]

0

2𝜋

=
𝑟4

4
2𝜋 

(3-25) 

For a solid shaft we have now obtained the polar moment of inertia. This is a cross-sectional 
constant given by 
 𝐽𝑠𝑜𝑙𝑖𝑑 𝑠ℎ𝑎𝑓𝑡 =

𝜋

2
𝑟4 (3-26) 

Moments of inertia are additive when calculated around the same axis. Hence, we may obtain 
the polar moment of inertia for a hollow shaft by subtracting the polar moment of inertia of the 
inner circle from the polar moment of inertia of the outer circle  
 𝐽ℎ𝑜𝑙𝑙𝑜𝑤 𝑠ℎ𝑎𝑓𝑡 =

𝜋

2
(𝑟𝑜

4 − 𝑟𝑖
4) (3-27) 

This procedure is illustrated on Figure 3-7. 
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Figure 3-7 Illustration of the process  for calculation of the polar moment of inertia for hollow 
shaft 
 
We will end this chapter with a calculated example demonstrating how shear stresses and angle 
of twist is calculated for a compound cylinder in torsion.  

Calculated example 3A: compound cylinder in torsion 

 
Figure 3-8 
The compound cylinder shown in Figure 3-8 has geometry defined by the following set of 
parameters: t=10 mm, dAB=125 mm, dBD=80 mm, LAB=300 mm and LBD=200mm. The cylinder is 
subjected to external torques TB=5000 Nm and TD=3000 Nm. Segment AB is made of steel with 
shear modulus GAB=77 GPa and segment BC is made of aluminum with shear modulus GBD=25 
GPa. 
Calculate a) the maximum shear stress in the two segments, b) the angle of twist of point D.  
 
Solution 
Step 1: The internal torques are determined on basis of the free body diagrams shown in Figure 
3-8. For the diagram in Figure 3-8-III, we obtain  
∑ 𝑇 = 0 → −𝑇𝐴𝐵 + 𝑇𝐵 + 𝑇𝐷 = 0 → 𝑇 = 𝑇𝐵 + 𝑇𝐷  
In a similar fashion, TBD is obtained on basis of the right segment in Figure 3-8-IV 
∑ 𝑇 = 0 → −𝑇𝐵𝐷 + 𝑇 = 0 → 𝑇𝐵𝐷 = 𝑇𝐷  
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[Example 3A continued …] 
Step 2: In order to proceed, the polar moments of inertia for the two segments are required. 
These are given by 

𝐽𝐴𝐵 =
𝜋

2
(𝑟𝐴𝐵,𝑜

4 − 𝑟𝐴𝐵,𝑖
4 ) =

𝜋

2
((

125 𝑚𝑚

2
)

4
− (

(125−20)𝑚𝑚

2
)

4
) = 1.20 ∙ 107𝑚𝑚4  

𝐽𝐵𝐷 =
𝜋

2
𝑟𝐵𝐷

4 =
𝜋

2
(

80 𝑚𝑚

2
)

4
= 4.02 ∙ 106𝑚𝑚4  

The shear stresses can now be calculated:  

𝜏𝐴𝐵 =
𝑇𝐴𝐵𝑟𝐴𝐵

𝐽𝐴𝐵
=

(5000+3000)∙103𝑁𝑚𝑚∙
125𝑚𝑚

2

1.20∙107𝑚𝑚4 = 41.7
𝑁

𝑚𝑚2  

𝜏𝐵𝐷 =
𝑇𝐵𝐷𝑟𝐵𝐷

𝐽𝐵𝐷
=

3000∙103𝑁𝑚𝑚∙
80𝑚𝑚

2

4.02∙106𝑚𝑚4 = 29.8
𝑁

𝑚𝑚2  

Step 3: Finally, the angle of twist of point D is obtained as the sum of twists in the two segments 

𝜑𝐷 = ∑
𝑇𝐿

𝐺𝐽
=

𝑇𝐴𝐵𝐿𝐴𝐵

𝐺𝐴𝐵𝐽𝐴𝐵
+

𝑇𝐵𝐷𝐿𝐵𝐷

𝐺𝐵𝐷𝐽𝐵𝐷
  

=
(5000+3000)∙103𝑁𝑚𝑚 300𝑚𝑚

77∙103 𝑁

𝑚𝑚2∙1.20∙107𝑚𝑚4
+

3000∙103𝑁𝑚𝑚 200𝑚𝑚

25∙103 𝑁

𝑚𝑚2∙4.02∙106𝑚𝑚4
  

= 2.59 ∙ 10−3rad + 5.97 ∙ 10−3rad = 8.59 ∙ 10−3rad   
The twist angle is converted to degrees by 

8.59 ∙ 10−3rad ∙
180

𝜋

deg

rad
= 0.49 deg 

 
  

3.6 Torsion of thin-walled tubes  
The theory introduced this far is solely valid when calculating stresses in solid or hollow shafts 
with circular cross sections. We may extend the theory to apply when calculating stresses in 
thin-walled tubes of general shape. We will define the shear flow by the equation 
 

𝑓 =
𝑇

2𝐴𝑚
 (3-28) 

which is a measure for how much shear stress that passes through a cross section. The area Am 
can in Figure 3-9 be observed to refer to the area spanned by the mid-line of the wall and does 
not constitute the cross sectional area.  
The distribution throughout the wall is however unknown. If a tube is thin-walled, we may 
assume the shear stress constant throughout the wall thickness. We may then obtain the 
stresses by dividing through with the thickness t 
 

𝜏 =
𝑓

𝑡
=

𝑇

2𝑡𝐴𝑚
 (3-29) 

As an example of application, we may consider the box shaped tube in Figure 3-10. If this is 
subjected to a torsional moment, the stresses in the horizontal and vertical faces are given by 

                           𝜏𝑣𝑒𝑟 =
𝑇

2𝑡1𝑏′ℎ′
           𝜏ℎ𝑜𝑟 =

𝑇

2𝑡2𝑏′ℎ′
          𝐴𝑚 = 𝑏′ℎ′ (3-30) 

It is of the outmost importance to note, that this procedure for stress calculation is only valid for 
closed tubes with low wall thickness. Open beam profiles like I and T shaped profiles will when 
subjected to torsion exhibit a behavior including warping, for which cross sections do not 
remain plane. This cannot be accounted for with the present method.  
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A procedure for calculation of stresses in solid bars was developed by Timoshenko and is often 
applied for mechanical design1 

 
 

Figure 3-9  Torsion of thin-walled tubes  Figure 3-10 Box shaped tube 
 

 

 

 

                                                           
1 Online lecture notes from MIT courseware  

https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-050-solid-mechanics-fall-2004/readings/emech8_04.pdf
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s 

Problems  
 

 

 

Figure P3.1  Figure P3.2 
 
Problem 3.1 
The shaft shown in Figure P3.1 is of length LAB=1200 mm and radius rAB=20 mm. The shaft is 
made of titanium with shear modulus G=41.4∙103 N/mm2. The design of the shaft must fulfill 
the following requirements: 1) the shear stress is not to exceed 150 N/mm2, 2) the maximum 
angle of twist is not to exceed 5.0 deg. Calculate the maximum torsional moment that can be 
applied to the shaft.  
Ans: stress based design: T<1.885∙106 Nmm, deformation based design: T<756.7∙103 Nmm  
 
Problem 3.2 
In Figure P3.2, a shaft subjected to the two torsional moments TB =TC= 1000 Nm is shown. 
The inner and outer diameter of the shaft is given by di=100 mm and do=110 mm, and the 
lengths are given by LAB=1000 mm and LBC=1500 mm. The shaft is made of aluminum with a 
shear modulus given by G=25∙103 N/mm2. Calculate: a) the reactional torque moment in the 
section marked A, b) Calculate the stresses in the two segments AB and BC, c) Calculate the 
angle of twist of point C 
Ans:            a) TA= 2000∙103 Nmm (directed opposite TB and TC) 
                    b) τAB=24.1 N/mm2 , τBC=12.1 N/mm2 

                    c) ϕC=0.1756rad+0.01317rad=0.03072rad (1.76 deg.)                              
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Figure P3.3 Figure P3.4 
 
Problem P3.3 
In Figure P3.3, a compound circular shaft in torsion is shown. The diameters of the shaft are 
given by dAB=75 mm and dBC=50 mm. The lengths shown in the figure are given by LAB=500 mm 
and LBC=600 mm. The two torsional moments have directions as specified in figure 3.3 and 
magnitudes given by TB=7500∙103Nmm and TC=1500∙103Nmm. The shaft is made of steel with 
shear modulus G=80∙103N/mm2. a) Calculate the stresses in the two segments AB and BC, b) 
Calculate the angle of twist of point C, c) Is the angle of twist sufficiently small for the analytical 
expression to be valid ? 
Present a mathematical argument for your answers. 
Ans:            a) τAB=72.4 N/mm2 , τBC=61.1 N/mm2 

                    b) ϕC=-0.01207rad+0.01834rad=0.0063rad (0.359 deg.)                              
 
Problem P3.4 
The motor shown in Figure P3.4 rotates the drive shaft AE with constant speed. The drive shaft 
has constant outer diameter do=120 mm and inner diameter di=80 mm. Furthermore, the 
drive shaft is subjected to the external torques TB=3800 Nm, TC=2600 Nm and TD=600 Nm. 
Calculate the stresses in the shaft segments AB, BC, CD and DE.  
Ans:            τAB=25.71 N/mm2, τBC=11.75 N/mm2, τCD=2.20 N/mm2, τDE=0  
 

 
Figure P3.5 

Problem 3.5 
The two solids shafts shown in Figure P3.5 have 
geometry given by the parameter set dAB=25 mm, 
LAB=800 mm, dCD=30 mm and LCD=1200 mm and are 
connect by gears mounted in B and C with radii rB=50 
mm and rC=110 mm. The shafts are made of steel with 
shear modulus G=77·103 N/mm2. If the maximum 
allowable shear stress is given by τallow=45 N/mm2, a) 
calculate the maximum value of TA that can be applied, 
b) for this value of TA, calculate the corresponding angle 
of rotation of point A. 
Ans:            a)  TAB=138.1 Nm, TBC=108.4 Nm 
                     b) ϕA=0.132 rad (7.58 deg) 
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Figure P3.6 

 
 

 
 
 

 
Figure P3.7 

 
 
Problem 3.6 
A hollow rectangular section is specified by the parameters h=200 mm, b=120 mm, t1=10 mm 
and t2=15 mm. The cross-section is subjected to a torsional moment T=2.2·104 Nm. Calculate the 
maximum stress in the cross-section due to torsion.  

Ans: 𝜏𝑚𝑎𝑥 = 54.1
𝑁

𝑚𝑚2 

Problem 3.7 
The pipe shown in figure P3.7 is constrained between two walls preventing it from twisting. 
The pipe is 2 m long and with an outer diameter of 110 mm. Furthermore, section BD is hollow 
with a constant wall thickness of 20 mm. The pipe is made of aluminum with a shear modulus 
of 25 GPa. If a torque of magnitude TB=7.5·103 Nm, calculate the shear stresses in the sections 
AB and BD.  
Hint: Use the same principle as we applied, when solving statically indeterminate axial load 
problems to formulate an equation of compability.  

Ans: 𝜏𝐴𝐵 = 20.2
𝑁

𝑚𝑚2, 𝜏𝐴𝐵 = 10.1
𝑁

𝑚𝑚2  
 

 


