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Nomenclature  

δ Deformation [mm]  L Length [mm] 
F Force [N] ε Axial strain [mm/mm] 
k Stiffness [N/mm] ΔT Temperature change [deg] 
σ Normal stress [N/mm2] θ Oblique angle [rad] 
τ Shear stress [N/mm2] α Thermal expansion coefficient [deg-1] 
A Cross-sectional area [mm2] Kt Stress concentration factor [-] 
E Module of elasticity [N/mm2] b,h,r,d Geometric dimensions [mm] 
µ Coefficient of friction φ Pulley angle 
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2.1 Introduction 
Trusses are bars which are assembled with pin-jointed connections and solely loaded in the 
joints. We know from statics, that trusses act as two force members. This refers to a state of 
loading that produces pure normal stress which may be tensile or compressive. Hence, trusses 
are not subjected to shear stress, and can neither transfer bending nor torsion. An example of a 
simplified truss structure is shown in Figure 2-1. Furthermore, the application of the terms 
joints, trusses and loads are shown in order to demonstrate how to use the relevant terminology. 
Our motivation for learning to master the theory contained in the present chapter is to learn 
how to analyse this type of structure by calculating the stress and deformation in the separate 
truss elements.  
In the present chapter, the basic formulas for calculation of stresses and deformations of trusses 
will be introduced. A real-life example of a system dominated by trusses is shown in Figure 2-2. 
The state of stress in a truss is unidirectional in the sense, that normal stresses only act in one 
direction, namely the longitudinal (the length coordinate direction), which in the following will 
be denoted 'the axial direction'. Furthermore, it will be demonstrated how to solve simple 
statically indeterminate problems.  
The introduced theory is valid for trusses of linear elastic materials (meaning that stresses are 
proportional to strains) in the elastic range. Furthermore, deformations are assumed small to 
moderate, so the calculated stresses can be assumed acting in the undeformed geometry rather 
than in the deformed. This enables us not to account for contraction effects when calculating the 
areas, which serve as basis for calculation of normal stresses. 
It is of great importance to note that structural elements act as trusses due to applied boundary 
conditions (pin-joints) and loading conditions (forces act solely in joints). If truss structures are 
loaded by significant distributed loads along their lengths or are assembled in a moment-stiff 
fashion, the separate elements will no longer act as trusses, but as beams. In a similar fashion, 
trusses with circular cross-sections will act as shafts if fixated or assembled by torsion-stiff 
connections.  
 
 

 
Figure 2-1 Example of an idealized console truss structure 
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Figure 2-2 Typical truss dominated structure, the Düsseldorf Airport terminal building (Photo 
taken by author) 

 

2.2 Physics re-cap: spring mechanics  
Initially, two very useful formulas will be repeated (or introduced) though they may seem 
lightly off-topic for the reader. We shall consider the problem of replacing the stiffness of a 
number of linear springs with a single spring stiffness acting in the same manner as the larger 
system. This will be referred to as an equivalent spring stiffness. By linear spring stiffness, we 
simply refer to a spring for which the force-deformation (F-δ) characteristics is linear, i.e. forms 
a straight line with constant slope equal to the stiffness k, see Figure 2-3-A.  
Initially, considering Figure 2-3-B, two springs in series are shown. The deformation of the 
entire system can be observed to be given by the sum of deformations of both springs. Hence, 
the following must hold 
 
      (Springs in series) 

𝛿 = 𝛿1 + 𝛿2 =
𝐹

𝑘1
+

𝐹

𝑘2
= 𝐹 (

1

𝑘1
+

1

𝑘2
) 

so  
1

𝑘
=

1

𝑘1
+

1

𝑘2
 

(2-1) 

In which k is the equivalent spring stiffness of the two springs. It is noted that the force is the 
same in both springs. 
Now considering two springs mounted in parallel as shown in Figure 2-3-C, the total force on 
the system must due to force equilibrium equal the sum of forces generated respectively by the 
two springs. On equation form, it follows that 
 
      (Springs in parallel) 

𝐹 = 𝐹1 + 𝐹2 = 𝑘1𝛿 + 𝑘2𝛿 = (𝑘1 + 𝑘2)𝛿 
so 𝑘 = 𝑘1 + 𝑘2 

(2-2) 

In which the deformation of both springs is equal. 
This enables us to determine equivalent stiffness measures for larger more complex spring 
systems, as long as these are linear. The two equivalent stiffness parameters can on 
mathematical form be observed to function opposite electrical resistances connected 
respectively in series and in parallel.  
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Figure 2-3 A: Linear spring force-deformation relation, B: linear springs coupled in series, C: 
linear springs coupled in parallel  
 

2.3 Statics: Equilibrium of internal and external forces in a section  
Before proceeding to methods for determination of stresses and deformations, we recall that 
calculations of these quantities must be based on internal rather than external forces. The 
procedure required for calculation of sectional forces is illustrated in Figure 2-4.The following 
does not apply for beams in bending in unmodified form. In general, the following rules must be 
kept in mind: 

 Calculation of stresses is based on internal (also called sectional) forces and moments. 
The internal forces are determined by introducing a fictive cut (or section) in the 
structure through the part where stresses are required determined. 

 The forces acting in the cut must maintain equilibrium with the external forces – if 
equilibrium was not maintained, the structure would accelerate. You may consider 
equilibrium of the segment left or right to the cut - the result is the same 

 You may add the internal forces in the section you are considering pointing in a 
direction of your own choice. If the physical direction of the force is opposite what you 
assumed, the force or moment will come out negative. However, it is often easiest to 
add the force in the direction you think it will work in reality 

 When cutting a structure in a given section you maintain equilibrium with externally 
applied loads but not forces from other sections. If you have cut multiple sections 
through a structure, the forces in these shall not be considered and drawn when 
considering the sectional forces in other cuts. You only consider one section at the time 
along with the external loads 

 For members in 1D loading (like axial force and torsion) which are not subjected to 
distributed loads or torques, the internal force and moment components can only vary 



 

 
Lecture Notes  

Introduction to Strength of Materials 
 

 
 

pp. 5  

 

in points where external loads are added. Hence, the values of the internal forces can be 
taken as constant between these points 

 
Now considering the bar AD shown in Figure 2-4-I subjected to two loads, FB and FD, the 
reaction in A can be determined on basis of the free body diagram in Figure 2-4-II 
 
 

∑ 𝐹 = 0 

→ −𝐹𝐴 + 𝐹𝐵 + 𝐹𝐷 = 0 
→    𝐹𝐴 = 𝐹𝐵 + 𝐹𝐷 

(2-3) 

 
 
 

 
Figure 2-4 Calculation of internal forces in the cylinder AD subject to two axial loads FB and FD 
 
The internal force will due to the two external loads vary in the two segments AB and BD. 
Considering the section in Figure 2-4-III, the internal force is calculated by 

Left segment: ∑ 𝐹 = 0  
→ 𝐹𝐴𝐵 − 𝐹𝐴 = 0 
→ 𝐹𝐴𝐵 = 𝐹𝐴 = 𝐹𝐵 + 𝐹𝐷       

Right segment: ∑ 𝐹 = 0  
→ −𝐹𝐴𝐵 + 𝐹𝐵 + 𝐹𝐷 = 0 
→ 𝐹𝐴𝐵 = 𝐹𝐵 + 𝐹𝐷 

(2-4) 

Equivalently, the internal force in the section in Figure 2-4-IV is calculated by 

Left segment: ∑ 𝐹 = 0  
→ 𝐹𝐵𝐷 + 𝐹𝐵 − 𝐹𝐴 = 0 
→ 𝐹𝐵𝐷 = 𝐹𝐴 − 𝐹𝐵 = 𝐹𝐷       

Right segment: ∑ 𝐹 = 0  
→ −𝐹𝐵𝐷 + 𝐹𝐷 = 0 
→  𝐹𝐵𝐷 = 𝐹𝐷 

(2-5) 

It is observed, that the internal forces may be calculated using either the left or right segment of 
the structure. Both equations are obtained by requiring internal and external forces to be in 
equilibrium. In both sections, the internal forces are calculated as being positive, meaning that 
these are directed as assumed (see Figure 2-4). 
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2.4 Mode of deformation and strain relation 
The axial strain 𝜀𝑥 in a bar is defined as the axial deformation δ divided by the length L. The 
deformations are assumed small, which we usually write δ<<L (meaning δ is a lot smaller than 
L) so we may neglect the change of length due to elongation and apply the original length in the 
undeformed state as measure for L. We have 
 
      

𝜀𝑥 =
𝛿

𝐿
 (2-6) 

If the bar is made of a linear elastic material, Hook’s law for uni-axial stress may be applied, see 
Figure 2-5.We get the uni-axial stress 𝜎𝑥 by the expression 
      

𝜎𝑥 = 𝐸𝜀𝑥 = 𝐸
𝛿

𝐿
 (2-7) 

If a bar is constituted by multiple sections with different lengths L, cross-sectional areas A and 
modules of elasticity E, the total deformation 𝛿 is obtained by the equation 
      
 𝛿 = ∑

𝐹𝑖𝐿𝑖

𝐸𝑖𝐴𝑖

𝑛

𝑖=1

 (2-8) 

in which F is the internal force in the i’th segment of the bar. In example 2A it is demonstrated 
how this equation is applied for analysis.  

 
Figure 2-5 Hook’s law for axial loads (linear constitutive relation for uni-directional stress) for 
stress-strain calculations 

2.5 Stress calculation 
The derived stress expression in Eq. 2-8 must comply with the definition of relation between 
stress and internal axial force obtained in chapter 1. This was given by 
 

𝐹𝑥  = ∫ 𝜎𝑥𝑑𝐴 (2-9) 

If the obtained stress expression is substituted into the equation above, the following is 
obtained for a constant value under the integral symbol 
 

𝐹𝑥 =  ∫ 𝐸
𝛿

𝐿
𝑑𝐴 = 𝐸𝐴

𝛿

𝐿
→

𝐹

𝐴
=  𝐸

𝛿

𝐿
 (2-10) 
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In general terms, we write  
 

𝜎 =
𝐹

𝐴
 (2-11) 

While this might seem to be an overkill in the present context, this will be the approach to be 
applied when deriving more complex stress expression for bending and torsion.  

2.6 General strategies: axial loads, torsion and bending  
The following general strategy can now be formulated. This is of great importance since we in 
the following chapters will apply this when analyzing shafts in torsion (ch. 3) and beams in pure 
bending (ch. 4). 

Derivation strategy for basic stress and deformation problems  

1. Consider the static equilibrium between internal and external forces in the analyzed 
section 
In this case  ∑ 𝑭 = 𝟎 for the considered section 

2. Since the distribution of stress at this state is statically indeterminate, the state of 
deformation caused by the internal forces is considered and applied as basis for 
derivations of a strain relation 

For axially loaded members we have 𝜺𝒙 =
𝜹

𝑳
 

Think of a strain as a ‘unit deformation’, hence, a deformation that is normed with respect to 
the total dimensions of an elastic body and remember, that the content of this course only is 
valid for small strains (we write 𝜀𝑥 ≪ 1) 

3. A linear elastic material law is applied (as constitutive relation) allowing conversion of 
strains to stresses on infinitesimal form. 

In the present case, 𝝈𝒙 = 𝑬
𝜹

𝑳
 

Remember to think of a stress as a force divided by an area. Forces normal to a section cause 
normal stresses σ and forces parallel to a section shear stresses τ. 

4. The obtained infinitesimal stress expression is integrated over the cross-section and hereby 
related directly to the internal forces.   

Since the stress for an axially loaded member is uniformly distributed, 𝑭𝒙 = 𝑬𝑨
𝜹

𝑳
=

𝝈𝒙𝑨 

Having completed an analysis like this enables us to establish a toolbox for standard problem 
solving for engineering analysis. The strategy is simple and goes like this: 

Standard problem solving strategy for basic stress and deformation problems 

1. Formulate the equilibrium equations between internal and external forces in all relevant 
sections. 

2. Knowing the internal forces, apply the derived ’ready-to-use’ formulas to calculate stresses 
in all relevant sections with internal forces and cross-sectional parameters as input 

In the present context, 𝜎 =
𝐹

𝐴
 

3. Knowing the internal forces, apply the derived ‘ready-to-use’ formulas to calculate the 
deformations of all relevant sections with internal forces, cross-sectional parameters and 
material parameters as input  

In this case, 𝛿 = ∑
𝐹𝐿

𝐸𝐴
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We are going to do a calculated example, to see how this works when doing engineering 
analysis.  

 

Calculated example 2A: Compound cylinder with axial loads 

 
Figure 2-6 
A compound cylinder is subjected to loads FB=200 kN and FD=100. The geometry is given by the 
parameter set t=10 mm, dAB,O=125 mm, dAB,I=105 mm, dBD=80 mm, LAB=300 mm and 
LBD=200mm. The segment AB is made of aluminum with module of elasticity EAB=70∙103 MPa 
and the segment BC of steel with module of elasticity EBD=210∙103 MPa. The short cap holding 
the two segments together can be neglected. Calculate a) the normal stresses in the two 
segments AB and BD, b) the deformation of point C. 
Solution: 
Step 1: The internal forces are determined from the free-body diagrams shown in Figure 2-6. 
For segment AB we obtain the following equation on basis of the right segment shown in Figure 
2-6-III 
∑ 𝐹 = 0 → −𝐹𝐴𝐵 + 𝐹𝐵 + 𝐹𝐷 = 0 → 𝐹𝐴𝐵 = 𝐹𝐵 + 𝐹𝐷  
In a similar fashion, FBD is obtained on basis of the right segment in Figure 2-6-IV 
∑ 𝐹 = 0 → −𝐹𝐵𝐷 + 𝐹𝐷 = 0 → 𝐹𝐵𝐷 = 𝐹𝐷  
Step 2: The normal stresses can now be calculated by 

𝜎𝐴𝐵 =
𝐹𝐴𝐵

𝐴𝐴𝐵
=

𝐹𝐵+𝐹𝐶
𝜋

4
((𝑑𝐴𝐵,𝑜)

2
−(𝑑𝐴𝐵.𝑖)2)

=
(100+200)∙103𝑁

𝜋

4
((125 𝑚𝑚)2−(105 𝑚𝑚)2)

= 83.0
𝑁

𝑚𝑚2  

 

𝜎𝐵𝐷 =
𝐹𝐵𝐷

𝐴𝐵𝐷
=

𝐹𝐷
𝜋

4
𝑑𝐵𝐷

=
100∙103𝑁

𝜋

4
(80𝑚𝑚)2

= 19.9
𝑁

𝑚𝑚2  

Step 3: The deformation of point C can be calculated as the sum of deformations of the two 
segments AB and BD: 

𝛿 = ∑
𝐹𝐿

𝐸𝐴
=

𝐹𝐴𝐵𝐿𝐴𝐵

𝐸𝐴𝐵𝐴𝐴𝐵
+

𝐹𝐵𝐷𝐿𝐵𝐶

𝐸𝐵𝐶𝐴𝐵𝐶
=

(𝐹𝐵+𝐹𝐷)𝐿𝐴𝐵

𝐸𝐴𝐵(
𝜋

4
((𝑑𝐴𝐵,𝑜)

2
−(𝑑𝐴𝐵.𝑖)2))

+
𝐹𝐶𝐿𝐵𝐷

𝐸𝐵𝐷
𝜋

4
(𝑑𝐵𝐷)2

 + 

    =
((200+100)∙103𝑁)300𝑚𝑚

70∙103 𝑁

𝑚𝑚2(
𝜋

4
((125 𝑚𝑚)2−(105 𝑚𝑚)2))

+
(100∙103𝑁)200 𝑚𝑚

210∙103 𝑁

𝑚𝑚2
𝜋

4
(80𝑚𝑚)2

  

    = 0.356𝑚𝑚 + 0.0189𝑚𝑚 = 0.375𝑚𝑚 
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2.7  Statically indeterminate problems  
For bars in axial loads, only one equation of equilibrium is available to solve for the reactions. 
However, if constraints are added in a fashion producing more than one reaction to external 
loads, the considered problem becomes statically indeterminate. The most common case is 
shown in Figure 2-7. A bar is constrained between two walls and an external load is applied. 
Obviously, an additional equation is required to solve for the wall reactions, since two equations 
are needed to solve for two unknowns.  
The common strategy for linear elastic problems is to apply the principle of superposition. We 
will split the problem into two separate load cases: one considering only the external load FB 
and the caused deformation δF and a second case considering only the right reaction force RD 
and the corresponding deformation δR. These deformations can be calculated by application of 
the equations in section 2.4. However, if added, these deformations have to add up to zero to 
form the original load case  
 𝛿𝐹 + 𝛿𝑅 = 0 (2-12) 
This type of equations are called equations of compability and are required to solve statically 
indeterminate problems. Application of this principle is illustrated in calculated example 2B.  

 
 
Figure 2-7 A bar constrained between two walls   
 

2.7.1 Thermal stresses in bars   
We shall now consider the simplest case of thermal stresses imaginable, namely, a bar which is 
mounted in a manner, so it is constrained against elongation. In Figure 2-8, this is visualized as 
two walls. The bar will be considered free of residual stresses, which in this context means, that 
the bar is free of stress. However, if the temperature is increased with ΔT, the bar would 
elongate if unconstrained. Since the wall prevents elongation due to thermal loads, a 
compressive reaction causing a compressive stress is introduced in the bar. We will assume that 
the bar cannot deform sideways, hence, in the transverse direction.  
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The considered problem is statically indeterminate. We recall from statics, that this means that 
the number of reactions we wish to calculate is larger than the number of equilibrium equations 
available. For statically indeterminate problems, the state of deformation must be considered 
along with the equilibrium in order to calculate the acting forces. The problem can again be 
solved by superposition. This solution technique refers to, that the problem is split into separate 
load cases, and the deformation is obtained as the sum of deformations caused by the separate 
loads. 
As shown in Figure 2-8, we will consider two load cases: a) the elongation of the bar due to the 
increase of temperature (II) and the corresponding compression of the bar induced by the wall 
constraint (III).  
For (II), we recall from physics that the deformation due to thermal expansion is given in terms 
of the thermal expansion coefficient α, ΔT and the length L by 
 𝛿𝑇 = 𝛼∆𝑇𝐿 (2-13) 
On the other hand, the compressive deformation due to the wall reaction for (III) is in 
accordance with Eq. 2-9 given by 
 

𝛿𝑃 =
𝑃𝐿

𝐸𝐴
 (2-14) 

The deformation of the lowest point must however add up to 0. We obtain the following 
expression 
 
  
  

𝛿𝑇 + 𝛿𝑃 = 0 

→
𝑃𝐿

𝐸𝐴
+ 𝛼∆𝑇𝐿 = 0 

→ 𝑃 = −𝛼∆𝑇 𝐸𝐴 

(2-15) 

If the stresses are required, these are easily obtained since the bar is in a state of uni-axial 
stress. Hence, 
 

𝜎 =
𝑃

𝐴
= −𝛼∆𝑇𝐸 (2-16) 

The compressive load induced by thermal expansion may cause the considered bar to buckle 

sideways. The calculation procedure for design against buckling will be introduced in chapter 9.  

 
Figure 2-8 Solution of statically indeterminate thermal stress problems by superposition 
   



 

 
Lecture Notes  

Introduction to Strength of Materials 
 

 
 

pp. 11  

 

Calculated example 2B: Axially loaded bar constrained between two walls  

 
Figure 2-9 
A pipe of length L=2 m is constrained between two walls while a load FB=55 kN is applied in 
point B. The section AB is solid with a diameter d=110 mm, while the section BD is hollow with 
wall thickness t=20 mm. The pipe is made of aluminum with elastic modulus E=70 ∙ 103𝑁/𝑚𝑚2. 
Calculate a) the reaction forces in A and D, and b) the stresses in the sections AB and BD 
Solution: 
From the free-body diagram (Figure 2-9-A), the following equation of equilibrium is obtained  
∑ 𝐹 = 𝐹𝐵 − 𝑅𝐴 − 𝑅𝐷 = 0   
However, we cannot solve this for the reactions, since the equation has two unknowns. The 
system is therefore statically indeterminate. We therefore consider the two load cases shown in 
Figure 2-9-B and Figure 2-9-C. These represent respectively the external load and the reaction 
at D along with their corresponding deformations. On this basis, the equation of compability, 
𝛿𝐹 + 𝛿𝑅 = 0, is obtained. In order to calculate the required deformations, we will need the cross 
sectional areas. These are given by  

𝐴𝐴𝐵 =
𝜋

4
𝑑𝐴𝐵

2 =
𝜋

4
(110 𝑚𝑚)2 = 9503.3 𝑚𝑚2  

𝐴𝐵𝐷 =
𝜋

4
(𝑑𝐵𝐷

2 − (𝑑𝐵𝐷 − 2𝑡)2) =
𝜋

4
((110 𝑚𝑚)2 − (110 𝑚𝑚 − 2(20 𝑚𝑚))

2
) = 5654.9 𝑚𝑚2  

Considering only the external load and the corresponding deformation (Figure 2-9-B), we 
observe that the internal forces in the two sections AB and BD are given by FAB=FB and FBD=0. 
The deformation 𝛿𝐹 can now be calculated 

𝛿𝐹 = ∑
𝐹𝐿

𝐸𝐴
=

𝐹𝐴𝐵(
𝐿

3
)

𝐸𝐴𝐴𝐵
+

0∙(
2𝐿

3
)

𝐸𝐴𝐴𝐵
=

55∙103𝑁(
2000 𝑚𝑚

3
)

70∙103 𝑁

𝑚𝑚2∙9503.3 𝑚𝑚2
= 0.055 𝑚𝑚  

Now, considering only the reaction force in D, the internal forces are constant and we have 
FAB=FBD=RD. Treating 𝑅𝐷 as unknown, the deformation due to  the reaction is given by  

𝛿𝑅𝐷
= − ∑

𝐹𝐿

𝐸𝐴
= −

𝑅𝐷

𝐸
(

𝐿

3

𝐴𝐴𝐵
+

2𝐿

3

𝐴𝐴𝐵
) = −

𝑅𝐷

70∙103 𝑁

𝑚𝑚2

(
2000 𝑚𝑚

3

9503.3 𝑚𝑚2 +
2∙2000 𝑚𝑚

3

5654.9 𝑚𝑚2 )  

= −4.37 ∙ 10−6 𝑚𝑚

𝑁
𝑅𝐷  

Substituting this into the equation of compability, we obtain one equation with one unknown 

4.37 ∙ 10−6 𝑚𝑚

𝑁
𝑅𝐷 = 0.055 𝑚𝑚 → 𝑅𝐷 =

0.055 𝑚𝑚

4.37∙10−6𝑚𝑚

𝑁

= 12.6 ∙ 103𝑁  

Having solved for 𝑅𝐷, we return to the free-body diagram. We have the internal forces FAB= RA     
and FBD=RD. Using the equation of equilibrium, we may now solve for the last reaction  
𝑅𝐴 = 𝐹𝐵 − 𝑅𝐷 = 55.0 ∙ 103𝑁 − 12.6 ∙ 103𝑁 = 42.4 ∙ 103𝑁  
The stresses can now be calculated  

𝜎𝐴𝐵 =
𝑅𝐴

𝐴𝐴𝐵
= 4.46

𝑁

𝑚𝑚2  𝜎𝐵𝐷 =
−𝑅𝐷

𝐴𝐵𝐷
= −2.23

𝑁

𝑚𝑚2 
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In example 2B, we notice, that if the cylinder had the same cross sectional area all the way 
through, the equation of compability after substitution of the deflections in terms of reactions is 
reduced to  

𝑅𝐷 =
𝑃

3
  𝑅𝐴 = 𝑃 − 𝑅𝐷 =

2𝑃

3
 

2.7.2 Stress concentrations in axial loads  
This far, only stresses in bars and trusses in sections where stresses are evenly distributed have 
been considered. However, in details containing notches, a local increase of stress will occur. 
Notches are geometrical discontinuities which cause a concentration of stress. Typical examples 
of notches are changes of diameters, holes and sharp corners. An example of a notch is shown in 
Figure 2-10 in section B containing the fillet radius r in the transition between a large and a 
small diameter in a compound cylinder. The analytical procedure for calculation of the exact 
stresses as solution to differential equations formulated on basis of the general theory of 
elasticity is beyond the scope of a basic course in strength of materials. However, analytical 
solutions have been mapped in form of standard solutions and visualized in appropriate 
diagram form, see Figure 2-11. In general, a stress concentration factor denoted Kt is obtained 
on basis of the geometry of the considered design. Once the stress concentration factor is 
available, the maximum stress in the considered notch can be obtained by  
 𝜎𝑛𝑜𝑡𝑐ℎ,𝑚𝑎𝑥 = 𝐾𝑡𝜎𝑛𝑜𝑚 (2-17) 

In this equation, the nominal stress, 𝜎𝑛𝑜𝑚 is given by FD/AD. It is of great importance to 
emphasize, that the stress concentrations only are valid for a given geometry and a given type of 
load. If the considered compound cylinders were subjected to bending or torsion, the stress 
concentration factor would change. Therefore, a different curve would have to be applied in 
order to calculate the correct stress concentration factors. Curves for a high number of different 
standard geometries and various loads are available in the technical literature.  

 

 
 

 

 
Figure 2-10 Stress concentrations calculated in 
notches using numerical methods (finite element 
analysis) 

Figure 2-11 Example of stress 
concentration factor diagram, in the 
present case for a compound cylinder 
(from Wikimedia) 
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2.8 The mechanics of ropes and bands on pulleys  
The general mechanical equilibrium of wires and ropes with neglectable bending stiffness leads 
to the hyperbolic catenary equations from statics1. However, this far the problem related to the 
forces in a wire rope tightly fit around a pulley or capstan has not been considered, see Figure 
2-12. In general, if a tensile line pull F is added as load, the force required to hold this load Fhold 
on the other side of the pulley is smaller than F, since some of the load is carried by the friction µ 
acting along the pulley. This effect is accounted for by the following expression usually referred 
to as the Eytelwein or capstan equation  
 𝐹 = 𝐹ℎ𝑜𝑙𝑑𝑒𝜑𝜇 (2-18) 
The holding force can be observed to decay exponentially with the friction and the number of 
turns a wire is wound around a pulley. The derivation requires determination of the normal 
force acting on an infinitesimal segment of wire and is in the present context beyond our scope2. 
Equation (2-17) is often needed in mechanical design.  

 
Figure 2-12 A wire with no bending stiffness on a capstan 
 

 

 

 

 

 

 

 

 

 

                                                           
1 Online notes on the derivation of the catenary equations 
2 MIT-courseware on the derivation of the capstan equation 

http://astrowww.phys.uvic.ca/~tatum/classmechs/class18.pdf
http://web.mit.edu/8.01t/www/materials/InClass/Raw/IC_Sol_W03D1-4.pdf
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Historical example: stress concentration factors, the de Havilland Comet-1 
The comet-1 airliner, was the first series of commercial jetliners, see Figure 2-13. The first 
planes went into service in 1952, but the planes of the Comet model suffered three fatal 
accidents in 1953-54, before all planes were grounded and crash investigations were initiated. 
The crash-commission identified multiple design faults, but pointed out that that stress 
concentrations due to insufficient fillets in the window sections had reduced the service life 
time in fatigue. This had led to catastrophic failure by rupture of the plane cabins. A sketch of 
the comet window sections are shown in Figure 2-15.  
(Fotos from Wikimedia) 

  
Figure 2-13 The comet-1 jetliner  Figure 2-14 Comet airliner cocooned and 

stored in Heathrow airport after grounding 
of all planes of this model in 1954 

 

 
Figure 2-15 The window section of a Comet-1 jetliner. Note the sharp window edges. Where 
would a fatigue crack form in this section and how would it develop? 
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Example of truss mechanics: The Bridgebuilder computer game  
The Bridgebuilder computer game (download here) is an excellent example of truss mechanics. 
This epic computer game classic which is more additive and sustains a higher awesomeness 
factor than all GTA-versions is all about constructing a bridge of trusses. Each level is passed 
when a train has crossed the bridge without this leading to structural collapse, see Figure 2-16. 
The game offers an excellent opportunity for training your intuition in structural mechanics.  
Bridgebuilder is based on a very simple finite element code, corresponding to a matrix 
formulation of the mechanics described in this chapter. A Matlab example from a similar code is 
shown in Figure 2-16. This code should have been made available on Moodle, but if your 
Professor forgets about him, remind him that you want it3.  
 

 
Figure 2-16 The Bridgebuilder computer game 

 

 
Figure 2-17 Results from a Matlab code reconstructing the Bridgebuilder physics engine  
  

                                                           
3 The essential theory related to conversion of the truss equations to matrix form is available in this 
online note 

http://www.chip.de/downloads/Bridge-Building-Game_23562627.html
https://ocw.mit.edu/courses/materials-science-and-engineering/3-11-mechanics-of-materials-fall-1999/modules/MIT3_11F99_fea.pdf
https://ocw.mit.edu/courses/materials-science-and-engineering/3-11-mechanics-of-materials-fall-1999/modules/MIT3_11F99_fea.pdf
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Problems  

 
 

Figure P2.1 Figure P2.2 
 
Problem 2.1  
A straight wire rope of length L=0.5 km is loaded axially by a force P=120 kN and has elastic 
modulus E=150 GPa. If the maximum allowable normal stress is given by 100 N/mm2, a) 
calculate the required diameter based on the allowable normal stress, b) calculate the required 
diameter of the wire rope, if the maximum allowable axial strain is 0.5%. 
 Ans.: a) d=39.1 mm, b) 14.3 mm  
 

 
Problem 2.2 
Determine the total system stiffness of the spring coupling shown in Figure 2.2 
 

 

 
 
 
 

 
 

Figure P2.3 Figure P2.4 
 
Problem 2.3 
Figure P2.3 shows a compound solid cylinder with diameters and lengths dAB=100 mm, dBC=75 
mm,        LAB=500 mm and LBC=600 mm. The cylinder is loaded in the axial direction as shown on 
the figure with the loads FB=100∙103N and FC=200∙103N. The cylinder is made of aluminum with 
elastic modulus E=70∙103N/mm2. a) calculate the reaction force at point A, b) calculate the 
stresses in the two segments AB and BC, c) calculate the axial deformation of point C. 
Ans:             a) FA=300∙103N, b) σA=38.2 N/mm2, σB=45.3 N/mm2, c) δC=0.661 mm 
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Problem 2.4 
In Figure P2.4, a solid bar with rectangular cross-section and an oblique section is shown. The 
bar is subjected to an axial load F=200 kN in each end. For h=50 mm, b=70 mm and the angle 
β=60 deg. calculate a) the normal stress in the oblique plane with area A, b) the shear stress in 
the oblique plane with area A, c) for which oblique angles will the normal and shear stress have 
maximum values?  
Ans:             a) σ=42.9 N/mm2, b) τ=24.7 N/mm2  
 

  
Figure P2.5 [In particular not true to scale] Figure P2.6 
 
Problem 2.5 
The solid bar shown in Figure P2.5 has quadratic cross-section with side length h=25 mm. The 
bar is fixated between two walls, so it cannot elongate. The material, which the bar is made of, is 
structural steel with elastic modulus E=210 GPa and thermal expansion coefficient α=12∙10-6 
deg-1. 
The bar is in the initial state free of stress. Calculate a) the normal force in the bar if the 
temperature of the bar is increased with ΔT=25 deg, b) the normal stress in the bar. 
The length of the bar is given by L=2 m.  
Ans:          a) P=-39.4 kN, b) σ=-63 N/mm2 
                 
Problem 2.6 
The compound cylinder shown in Figure P2.6 has geometry given by dAB=50 mm, LAB=600 mm, 
dBC=75 mm, LBC=500 mm. Segment AB is made of brass with module of elasticity EAB=110 GPa 
and thermal expansion coefficient αAB=19∙10-6 deg-1 while segment BC is made of aluminum 
with module of elasticity EBC=69 GPa GPa and thermal expansion coefficient αBC=23.1∙10-6 deg-1. 
The bar is in the initial state free of stress. Calculate the normal stress in the two sections of the 
bar if a) an external load 𝐹𝐵 = 100 𝑘𝑁 is applied in B, b) a uniform temperature increase of 
ΔT=35 deg is applied, c) if both the external load from a) and the temperature increase from b) 
is applied  
Ans: a) σAB=-18.9 N/mm2, σBC =14.2 N/mm2, b) σAB=-92.6 N/mm2, σBC =-41.2 N/mm2, c) σAB=-
111.5 N/mm2, σBC =-26.9 N/mm2   
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Problem 2.7 

 
Figure 2.7 

For the truss system shown in Figure P2.7, for 
P=100kN, LAC=2m and θ=60 deg. a) Calculate 
the reaction forces in point A and B. 
The trusses are made of rectangular solid 
steel bars with cross-sectional dimensions  
h×b=100 mm × 50 mm. b) Calculate the 
stresses in the bars AC and BC.  
 
Ans.:          a) RA,x=58 kN,  RA,y=0 
                        RB,x=-58 kN, RB,y=100 kN 
                   b) σAC=-12N/mm2,σBC=23 N/mm2 

 

 
 
 
Figure 2.8 

Problem 2.8 
Two pieces of wood are assembled with 
splices glued to the surfaces of contact. A 
force of magnitude P=25kN is applied to the 
assembly. A gap g=10 mm is required 
between the members which are b=150 mm 
wide. If the allowable shear stress in the glue 

is given by 𝜏𝑎𝑙𝑙 = 3
𝑁

𝑚𝑚2, calculate the 

minimum required length L. 
Ans.:      L=65.56 mm 

 

 
Figure P2.9 

Problem 2.9 
The frame shown in Figure P2.9 is loaded by a 
vertical force P=245 kN in point B. The cross 
sectional areas are 2500 mm2 and 1800 mm2 
for trusses AB and AD. All trusses are made of 
structural steel with elastic modulus E=210 
GPa. The frame is of height h=3 m and length 
l=10 m.  
For all members in the frame, determine a) 
the internal forces, b) the deformations, c) the 
normal stresses 
Ans.:  
a) FAB=-238.1 kN, FAD=204.2 kN 
b) δAB=-2.64 mm, δAD=2.70 mm 
c) σAB=-95.24 N/mm2,σAD=113.4 N/mm2  
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Figure P2.10 

Problem 2.10  
A composite bar of length L=200 mm is 
constituted  by an outer aluminum mantle 
with side lengths of 60 mm and a steel core 
with side lengths of 20 mm. Both mantle and 
core has quadratic cross sections. The module 
of elasticity of aluminum is given by 70 GPa 
and the corresponding value for steel is 210 
GPa. If a total load P=75 kN is applied to the 
bar through a plate mounted on top of the bar 
and the lower end of the bar rests on a similar 
plate, calculate the normal stress in the 
mantle and in the core of the cylinder  

Ans: 𝜎𝑚𝑎𝑛𝑡𝑙𝑒 = 17.1
𝑁

𝑚𝑚2, 𝜎𝑚𝑎𝑛𝑡𝑙𝑒 = 51.1
𝑁

𝑚𝑚2   

 

 

 

 


