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Awesome people in engineering,  ch. 1 
Augustin-Louis Cauchy (1789–1857) was a 
French Mathematician, who can be held 
responsible for proposing solutions to an 
extremely wide range of problems in 
mathematics and physics. He graduated from 
Ecole Polytechnique in 1807 and went into 
science. During his career he somehow 
managed to publish more than 700 research 
papers, which should make it clear to the 
reader from the very beginning that being 
geek is in fact a superpower. In the present 
chapter we will apply Cauchys stress 
definition However, Cauchy is claimed almost 
single-handed (and apparently with intent) to  
 
 
 
 
 

 
have invented complex calculus and made 
important contributions to the field of wave 
theory as well.  

 

 

 

 

 

 

 

 

 
(Picture from Wikimedia – public domain)

https://commons.wikimedia.org/wiki/File:Augustin-Louis_Cauchy_1901.jpg
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1.1 Introduction to the lecture notes  
THIS is where you were supposed to start reading … but I have a strong feeling that I could just skip 
this section, since no one eventually will end up reading it. But anyway …  

The objective of the present notes is, as the name states, to provide a written introduction to 
strength of materials. Once upon a time, when I studied engineering myself, it was a prerequisite to 
buy a book in order to follow a course. When I became a professor, I initially assumed that this was 
still the case, but soon figured out that times had changed and that I would have to provide some 
sort of script for my students. I still recommend that the students get a book, but experience shows, 
that only very few listens to that advice. Therefore, I have attempted to provide a brief written 
introduction to all mandatory content for a second semester mechanics course for mechanical or 
mechatronics engineers. The notes are however written late at night (since I have not regained the 
ability to watch TV after graduating as an engineer). I hope that most errors have been found and 
corrected in the previous two revisions. If you find mistakes in the notes, please mail me, and I will 
correct them (at least for future revisions).  
However, I figure that many lectures are having the same problem as me … therefore, if you are a 
lecturer …  
 

 

All sketches, equations and text in these notes is the creation of the author, and 
you are welcome to use, borrow, steal and modify the content with or without 
citation. Photos taken from Wikimedia (will be clearly marked) are an exception. 
These are licensed so reproduction is allowed, but it is left to the reader to look up 
the specific details regarding licensing, citation and modification.   

 
If you are a student, remember the first three rules required for learning mechanics:  

1. Come to the lectures, go to the exercises  
2. Come to the lectures, go to the exercises  
3. Mechanics is NOT hard, but if it does not hurt when you start learning something new, you 

are probably not doing it right  

 

Regards,  
 

 
Prof. Niels Højen Østergaard 
 
Engineering Mechanics  
Hochschule Rhein-Waal  
niels.ostergaard@hochschule-rhein-waal.de 
 

 

mailto:niels.ostergaard@hochschule-rhein-waal.de
https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiutc_uv6TSAhUH0xQKHRPUBJsQjRwIBw&url=https://en.wikipedia.org/wiki/Creative_Commons_license&psig=AFQjCNFexBaNAnHmhpZUmvTbhwyXL1EAOQ&ust=1487880204263731
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1.2 Introduction to strength of materials: stresses and forces    
Strength of materials is the discipline related to calculation of stresses and strains in structures and 
mechanical components. In statics, the concept of static equilibrium was defined and the difference 
between internal and external forces introduced. However, it is not possible solely on basis of force 
calculation to assess the structural integrity of a component or structure. This does in layman’s 
terms simply refer to, if the component can sustain the applied loads or will deform beyond the 
allowable limit, or even break. Strength of materials is obviously a core subject for mechanical and 
mechatronics engineers, since it enables us to determine by calculation, if the components we 
design will function as intended or fail. In order to do so, we define the term stress as a measure for 
internal force per area acting inside a structure. Converting our internal forces to stresses by 
calculations provides us with a measure that contrary to forces can be related to characteristic 
material values, which we may either measure or look up.  
We will furthermore consider the problem related to calculation of deformations in components 
and structures. On basis of calculated deformations, it will be considered how to calculate strains as 
a measure for how large deformations are relative to the dimensions of the considered component.   
The intention of the present first chapter is to introduce the general framework, which in the 
following sets of notes will be applied for analysis of specific mechanical components. The chapter 
does not contain exercise problems like the following chapters, since we have not started analyzing 
components yet – we will only consider the general definitions.  

1.2.1 Recap: the concept of static equilibrium 
From statics, we know that the following three relations apply if a plane mechanical system is in 
static equilibrium 

 ∑ 𝐹𝑥 = 0     ∑ 𝐹𝑦 = 0     ∑ 𝑀𝑧 = 0  (1-1) 
Equation 1-1 basically reads, that we can sum up all forces in the directions of a cleverly chosen 
coordinate system and furthermore calculate the sum of moments around a point of our own 
choice. This turned out to be our main tool when calculating reaction forces and moments on 
structures subjected to external loads. We can extend the plane equilibrium to three dimensions by 
adding two moment equilibria and an additional force equilibrium  

 ∑ 𝑀𝑥 = 0     ∑ 𝑀𝑦 = 0     ∑ 𝐹𝑧 = 0  (1-2) 
In the following, we will see that the concept of static equilibrium also serves as basis for 
calculation of internal forces. If we consider a bar subjected to a single axial load as shown in Figure 
1-1-I, equation 1-1 allows us to calculate the reaction force in A. We do so by drawing a free body 
diagram, see Figure 1-1-II, and writing a single equation of equilibrium with a single unknown: the 
reaction force FA. However, we will now imagine that an imaginary cut is introduced between the 
points A and B separating the bar in two, see Figure 1-1-III. Both sections must remain in static 
equilibrium, and this can only be maintained if a force acts in the cut we applied. These forces act 
inside the material and are therefore called internal or inner forces contrary to the applied loads, 
which we will refer to as external or outer forces. These are the forces we will use for stress 
calculations.  

Before proceeding, we will however need a formal definition of the term stress.  
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Figure 1-1 Example of the internal forces in an idealized console-bar structure 
 

1.2.2 Cauchy’s definition of stress 

 
Figure 1-2 A. Elastic body subjected to external loads, B. imaginary cut through the body with 
internal force ΔF on the surface of the section, C. Internal force projected onto the coordinate 
system of the section [Form slightly simplified] 
 

We will consider an elastic body subjected to external forces F1 … Fn. Tradition dictates that the 
body is drawn potato-shaped, but it could have any form. If we add an (imaginary) cut through the 
body, internal forces must act in the section to maintain equilibrium. We will now for the sake of 
simplicity define a coordinate system with the x-axis as normal to the section and the y- and z-axes 
in the plane of the section.  
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We  now let ΔF denote the internal force on the area ΔA acting inside the material. We may define a 
stress normal to the section. This is in an average sense given by  
 𝜎𝑎𝑣 =

∆𝑁

∆𝐴
  (1-3) 

For obvious reasons, we call this component a normal stress. The two internal forces acting parallel 
to the section are called shear forces. The corresponding shear stresses in an average sense given 
by 
 𝜏𝑦,𝑎𝑣 =

∆𝑉𝑦

∆𝐴
                  𝜏𝑧,𝑎𝑣 =

∆𝑉𝑧

∆𝐴
 (1-4) 

For a point P inside the area ΔA, the stress components can now be defined as point values by 
letting the size of the area turn to zero. Cauchy defined the stresses in the following fashion 
 𝜎𝑥 = lim∆𝐴→0

∆𝑁

∆𝐴
  (1-5) 

 𝜏𝑦 = lim∆𝐴→0
∆𝑉𝑦

∆𝐴
      𝜏𝑧 = lim∆𝐴→0

∆𝑉𝑧

∆𝐴
  (1-6) 

We note that: 
 stress calculation is based on internal forces  
 stresses are divided into normal and shear components 

1.2.3 Inner forces defined in terms of stresses   
Now after we have gotten an idea of what a stress is, we notice that stresses often, actually usually, 
will vary over the considered section. If stresses are known, we can also define the internal forces 
as three force components and three moment components in terms of stresses. However, since 
these vary, we will have to consider all infinitesimally small area segments in the section and sum 
up all force times area terms. This sounds as tedious as it is, and luckily we can use integration to 
solve this task and integrate a known stress distribution over a cross section to get forces and 
moments.  

 
Figure 1-3 Internal forces defined as a set of generalized coordinates in terms of stresses  
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On basis of Figure 1-1, this gives us the following relations  

𝐹𝑥  = ∫ 𝜎𝑥𝑑𝐴          𝐹𝑦 = ∫ 𝜏𝑥𝑦𝑑𝐴          𝐹𝑧 = ∫ 𝜏𝑥𝑧𝑑𝐴 

𝑀𝑥 = ∫(𝑦 𝜏𝑥𝑧 − 𝑧 𝜏𝑥𝑦)𝑑𝐴          𝑀𝑦 = ∫ 𝑧 𝜎𝑥𝑑𝐴          𝑀𝑧 = ∫(−𝑦 𝑧 𝜎𝑦 )𝑑𝐴 

This might seem a little bit abstract for the time being, but we will get back to this later, since this 
definition exactly is what is required in order to derive the basic design formulas for stress 
calculations in shafts and beams.   

1.2.4 Principal stresses  

 
 

Figure 1-4 A solid bar with an oblique section and a axial load  
 
We will consider an axially loaded bar containing an oblique section, see Figure 1-4. The normal 
and shear stresses in the oblique section are obtained by determining the projection of the force F 
onto directions normal and parallel to the section. These are divided with the area of the oblique 
section to obtain the normal and shear stresses. We obtain the following two expressions  
 𝜎 =

𝐹𝑐𝑜𝑠𝜃

𝐴
=

𝐹𝑐𝑜𝑠𝜃
𝐴0

𝑐𝑜𝑠𝜃

=
𝐹

𝐴0
𝑐𝑜𝑠2𝜃  

(1-7) 

 
 

𝜏 =
𝐹𝑠𝑖𝑛𝜃

𝐴
=

𝐹𝑠𝑖𝑛𝜃
𝐴0

𝑐𝑜𝑠𝜃

=
𝐹

𝐴0
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃  (1-8) 

The stresses can be observed to be harmonic functions of the angle of the section θ. If we plot the 
stresses for varying values θ, we obtain results as shown in Figure 1-5. We note the following:  

 The stresses are dependent on the orientation of the section  
 A direction for which the shear stresses vanish and leave us with a state of pure normal 

stress is called a principal direction. The corresponding normal stresses are called principal 
stresses. In the present example the first principal direction is the axial direction in which 
the load is applied and the corresponding principal stress is F/A0. The second principal 
direction perpendicular to the first direction and the corresponding principal stress is 0. We 
observed that the shear stress is zero in both principal directions. A transformation to 
principal coordinates gives us maximum normal stresses and no shear.  

We learn more about principal stresses in chapter 7.  
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Figure 1-5 Normal and shear stress for varying values of θ 
 

1.2.5 Saint-Venant's principle  
This principle in a qualitative sense deals with the correspondence between stresses and the means 
by which loads are applied to a given structure. Saint Venant’s principle states that one load applied 
in different fashions will cause local variation in stresses only in a vicinity of the area of action. At a 
distance from the point or area of action, the stresses will however remain the same, no matter by 
which means the load was applied. One could also say, that the remaining part of the structure ‘does 
not care’ how the load is added. For the bar in Figure 1-6, the stresses in a cross section at a 
distance from the area where the load is applied will be equal if the following condition is fulfilled: 
 

𝑃 = ∫ 𝜎2𝑑𝐴 = ∫ 𝜎3𝑑𝐴 (1-9) 

This turns out to extremely useful in many contexts and though it might seem unnecessary abstract, 
it is eventually worth remembering. Saint-Venant’s principle enables us to replace a force acting on 
a small part of a structure with an equivalent load, that is easier to handle in our calculations, 
without effecting the stresses at global level.  

 



 

 
Lecture Notes  

Introduction to Strength of Materials 
 

 
 

pp. 8  

 

 
Figure 1-6 Various ways of applying a load to a structure  
 

1.3 Strains and deformations    
We have this far solely considered the stresses produced by loads added to a structure and should 
now be completely on top of the general framework. Therefore, the deformations caused by the 
loads will now be considered in order to define the term strain.  

1.3.1 Normal strain 
A bar subjected to an axial load is again considered, see Figure 1-7. The axial load will not only 
produce a state of normal stress in the bar, but also cause it to elongate. The elongation appears 
solely in the axial direction and is denoted δ. 

  
Figure 1-7 Left: A bar subjected to an axial load, Right:  failed specimens from a tensile test. We 
can observe the mode of deformation (figure from Wikimedia – GNU free documentation license) 
 

 

https://commons.wikimedia.org/wiki/File:Traction_cylindrique.jpg
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We now define the normal strain as  
 

𝜀 =
𝛿

𝐿
 (1-10) 

in which L denotes the undeformed length of the bar, which it is fair to apply as long as 
deformations are small. We write this as δ<<L. In general, when we do calculations for small 
deformations, we usually refer to this as application of small strain theory. The opposite, 
calculations for large deflections, relies on finite strain theory, and is significantly more complex. We 
will therefore limit our scope to small deflections. It is furthermore observed, that the strain is unit-
less.  

1.3.2 Shear strain 
If large shear forces act on a component, these will naturally lead to deformations in the plane of 
the considered section, see Figure 1-8. While normal forces actually changes the length of faces in a 
considered section, shear forces will however only distort the shape of the section, see Figure 1-9-B. 
We therefore simply apply the distortion angle γ as measure for shear strain.  
 

  
Figure 1-8 Left:  Assembly in which the load on the bolt is dominated by shear, Right:  Shear 
deformation in a bolt after application as shear pin (figure from Wikimedia – CC-licensed)  

 

                  

 

s 

Figure 1-9 Relation between stress and strain respectively for normal and shear actions 

https://commons.wikimedia.org/wiki/File:A_Special_Bolt_(6240750464).jpg
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1.3.3 Hook’s law for 1D linear elastic stress 
In Figure 1-9 to the right, the deformations caused by normal and shear forces are shown. If 
stresses seem abstract at this stage, it is probably easier to think about the corresponding strains 
these cause. The stress and strain terms are namely related. If stresses are linear functions of 
strains as shown in Figure 1-9 to the left, we say that the material of the considered component 
obeys Hook’s law. The two constants E and G are material parameters called elastic and shear 
modulus respectively. These are for homogenous isotropic materials (like steel and aluminum) 
related by the equation 𝐸 = 2𝐺(1 + 𝜈), in which 𝜈 is a third material parameters denoted Poisson’s 
ratio. This linear model is a good and reasonable assumption for many metallic materials, if the 
applied loads do not cause permanent deformations. For other materials, the stress-strain relation 
would not be linear, but can still be described by a function, which we refer to as a non-linear 
material law (or constitutive relation in general theory of elasticity). The material law serves as our 
‘grand-link’ between stresses and strain and thereby links the applied loads to the deformation of a 
component. We have now observed that loads might cause either shear or normal stresses and that 
we may define corresponding strains. We will derive design expressions for this for the most 
common mechanical components during the course on strength of materials. Examples of such 
components are shown in Figure 1-10. 

 
Figure 1-10 A: Undeformed cylindrical bar with a small area segment dA, B:  Application of axial 
force will cause elongation leading to a state of pure normal stress and strain uniformly distributed 
over the cross-section, C: Application of a torsional moment will cause twist leading to a state of 
pure shear stress and strain with a non-uniform distribution, D: Adding a  moment as external end 
load will cause bending leading to a state of normal stress and strain with a non-uniform 
distribution 
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1.4 Material failure  
Stress calculation is practical for engineering design, since every material has a limit, where 
deformations become permanent, in the sense that they do not vanish when a component is 
unloaded. We say, that plasticity has occurred contrary to elastic material behavior, for which 
deformations are not permanent. For most design applications, it is undesirable to have plastic 
deformations, so this limit should not be exceeded (more about this in your course on mechanical 
elements/technical design). We denote the stress, where the elastic regime ends, the yield stress 
and denote it 𝜎𝑌. Once plasticity is encountered, the stress-strain curve will no longer be linear, but 
further loads may still be applied until the ultimate stress 𝜎𝑈 is reached. When this stress is 
exceeded, fracture occurs and the material fails. However, once the yield limit is exceeded, two 
types of material behavior are common and will be considered in the following. Materials may 
either be ductile, meaning that they possess a certain fracture-toughness in impact tests, and 
deform significantly in the plastic regime, or brittle, where impact loads easily cause fracture, and 
very little plastic deformation occurs prior to fracture. As a measure for how brittle a material is, 
impact tests are often used. The most classic test type is called the Charpy-V (more about this in 
your course on materials engineering). The stress-strain relation for a typical tensile test of a 
ductile and a brittle material is shown in Figure 1-11 and Figure 1-12. Glass constitutes an example 
of a brittle material, since it is highly sensitive to impact loads, and barely deforms plastically before 
fracture occurs.  
We note that the values of the yield stress and fracture stress of metals can be increased by 
mechanical and thermal processing. However, it is of great importance to remember that the elastic 
stiffness constants E and G are changed little to none by processing. Therefore, the allowable design 
stresses for various types of steel and aluminum are different dependent on the material quality. 
Still, two similar parts manufactured from two different steel types will deform in the same fashion 
when subjected to equal loads. 

 
Figure 1-11 Ductile material behavior during tensile test 
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Figure 1-12 Brittle material behavior during tensile test 
 

It is obviously desirable to apply metallic materials with ductile behavior for most applications in 
mechanical design. In the present course, our scope is limited to the linear elastic range, which is 
the regime usually needed for mechanical design.  

1.4.1 Failure criteria  
We have now figured out how to design against uni-axial (1-D) stress – we simply have to remain 
under the yield stress. It was not that hard. The question is now how the handle a multi-axial (2-D 
or 3-D) state of stress with shear components. This is done using failure criteria. These are basically 
equations that allow us on basis of a given stress state to calculate a single reference stress, which 
can be compared with the yield stress. We may transform the stress state to principal coordinates 
to lose the shear components (that was an important part of the motivation for the development of 
principal coordinates). The probably widest applied failure criteria is the Von Mises Reference 

stress criteria, see Figure 1-13. For uni-axial stress this reduces to 𝜎𝑟𝑒𝑓 = √𝜎2 + 3𝜏2, but is for a 

general 3D state of stress given by 
 

𝜎𝑟𝑒𝑓,𝑉𝑜𝑛 𝑀𝑖𝑠𝑒𝑠 = √(𝜎𝑥−𝜎𝑦)
2

+(𝜎𝑦−𝜎𝑧)
2

+(𝜎𝑧−𝜎𝑥)2+6(𝜏𝑥𝑦
2+𝜏𝑦𝑧

2+𝜏𝑧𝑥
2)

2
  

                         = √
(𝜎1−𝜎2)2+(𝜎2−𝜎3)2+(𝜎3−𝜎1)2

2
  

 

(1-11) 
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Figure 1-13 Visualization of the allowable von Mises reference stress for a 2D state of stress after 
transformation to principle coordinates (meaning that we have lost the shear components and 
obtained max. and min. normal stresses 𝜎1 and  𝜎2)  
 

 

 
Historical example 1A: Brittle failure of the Liberty ships 
Ductile steels may turn brittle due to low temperatures or improper heat treatment. The liberty 
ships were examples of brittle failure in welded sheet metal during WW2 as the welding process 
was developed. Brittle material behavior is detected by impact tests (denoted fracture toughness). 
During the failure investigations, it was found that sheet metal in the post-welded state should 
obtain a fracture toughness of 27 Joule in a Charpy-V impact test to be fit for purpose.  
 

  
Figure 1-14 Left: Brittle failure of ship (Picture from Wikimedia – Public domain), Right: Liberty 
ship Jeremy O’Brien (Foto by author) - maintained by enthusiastic retired naval machinists who 
love when engineers come by and ask about their ship  

 

https://commons.wikimedia.org/w/index.php?search=ship+brittle+failure&title=Special:Search&go=Go&uselang=en&searchToken=4jr66voxptd5cuomu0ph2odcr#/media/File:TankerSchenectady.jpg
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1.4.2 Fatigue  
We have now figured out, that applied loads cause stresses and once these have been calculated, 
they can be compared to material values. This comparison enables us to figure out, if plasticity will 
occur in the analyzed component. However, materials may not only fail due to static overstressing, 
but also due to material fatigue. This refers to formation of cracks in a component or structure 
which, if these grow, will lead to fracture and thereby failure of a structure. Fatigue cracks are 
formed due to cyclic loads and in general, a tensile mean stress leads to a lower component life time 
(since tensile stresses open cracks). This is commonly accounted for using Smith or Haigh 
diagrams, but is presently beyond our scope. If a larger number of tensile tests are conducted with  
cyclic loads of varying amplitudes Δσ, it can be determined how many load cycles N a test specimen 
can sustain before failing due to formation of fatigue cracks. Such tests were first conducted by the 
German railway engineer August Wöhler, who plotted the experimentally obtained results in a 
double logarithmic coordinate system.  This type of diagram is called a S-N or Wöhler-curve, see 
Figure 1-15. For steel, it can be observed, that a certain limit in number of applied load cycles exists, 
for which the tensile test specimens have infinite lifetime. This limit is called the endurance limit. 
For aluminum, this limit can be observed not to be present, which is one of the reasons for that steel 
classically is considered a lot more resistant against fatigue than aluminum. Among other reasons is 
that aluminums module of elasticity is about one third of steel’s, which leads to larger strains that 
cause the actual fatigue damage.  

 
Figure 1-15 S-N curves for steel and aluminum  
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Historical example 1B: Fatigue failure of the Alexander-Kielland drilling rig 

The Alexander Kielland semi-submersible drilling rig capsized in 1980 while in operation at the 
Ekofisk field on the Norwegian Continental shelf killing more than a 100 people. The failure 
commision concluded that a bracing (shown below) had fractured close a position where 
electricians had mounted a hydrofon (measuring equipment) by welding close to a man hole. The 
poorly conducted welding had in combination with the stress concentration from the man hole 
reduced the fatigue life time of the bracing to an extend, where failure occurred while the rig was in 
service (though the safety factor against fatigue for offshore structures in the North Sea usually is 
10).  
The failure report from the Norwegian oil and gas authority (Petroleumsdirektoratet) can be 
reviewed in your Professors office if he once more forgets to bring it to the lecture. 
 

 
  

 
Figure 1-16 Left: The Alexander-Kielland Platform in operation prior to failure (from Wikimedia – 
free distribution granted), Right: sketch of subsea structure with position of failure (from 
Wikimedia – public domain) 
  

 

1.5 Advanced topic: a brief introduction to the general theory of elasticity 
This far we have only considered equilibrium equations formulated in force. However, this is only 
convenient for components, where a simple system of internal forces can be introduced. For 
general 3D elasticity this is not the case, see Figure 1-17 and equilibrium equations are formulated 
directly in stresses.  

https://en.wikipedia.org/wiki/Alexander_L._Kielland_(platform)#/media/File:Alexander_L_Kielland_and_Edda_2-7C_NOMF-02663-1-650.jpg
https://commons.wikimedia.org/wiki/File:ALK_columns_fractures_english.png
https://upload.wikimedia.org/wikipedia/commons/d/d7/ALK_columns_fractures_english.png


 

 
Lecture Notes  

Introduction to Strength of Materials 
 

 
 

pp. 16  

 

 
 

Figure 1-17 A segment of an elastic body subjected to a three-dimensional state of stress   
 

These are given by the following expressions, in which the B-components are the body forces (for 
example gravity  

𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
+ 𝐵𝑥 = 0 

𝜕𝜎𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑧
+ 𝐵𝑦 = 0 

𝜕𝜎𝑧

𝜕𝑧
+

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
+ 𝐵𝑧 = 0 

which was derived by expanding the stresses over the considered cube and neglecting higher order 
terms. The required constitutive equations (material law) is given by 

𝜀𝑥 =  
𝜎𝑥

𝐸
− 𝜈

𝜎𝑦

𝐸
− 𝜈

𝜎𝑧

𝐸
 

𝜀𝑦 = −𝜈
𝜎𝑥

𝐸
+

𝜎𝑦

𝐸
− 𝜈

𝜎𝑧

𝐸
 

𝜀𝑧 = −𝜈
𝜎𝑥

𝐸
− 𝜈

𝜎𝑦

𝐸
+

𝜎𝑧

𝐸
 

This looks rather horrifying to solve analytically, and that is mostly also the case, which leads us to 
apply numerical method to obtain a solution for the stresses. However, for students who will 
specialize in mechanics, these equations will usually re-emerge towards the end of the bachelor or 
at the beginning of the master program. Now you have seen them and know what you are getting 
into1.  

                                                           
1 A really good online note on introduction to general theory of elasticity from MIT open courseware is 
available here  

https://ocw.mit.edu/courses/mechanical-engineering/2-080j-structural-mechanics-fall-2013/course-notes/MIT2_080JF13_Lecture3.pdf

